Connect with us

Power

Batteries & Biofuels, Not Aluminum & Hydrogen, Will Fuel the Airlines of the Near Future (Part 2)

Published

on

In the first of three parts of this series on refueling aviation, the challenges of replacing jet fuel that is cheap, convenient, and effective — as long as we ignore global warming and air pollution — and getting alternative fuel airplanes certified to carry passengers were covered. In summary, it’s hard to find a good alternative to jet fuel, and hydrogen is very expensive and hence a poor alternative. If hydrogen were the only alternative, then there would be an argument for it, but no.

The section of Wright Electric’s white paper dealing with hydrogen and ZeroAvia’s choices as well, have been plumbed. But the second half of the white paper strays even further from anything sensible, into a proposal to use aluminum air fuel cells.

Aluminum Air Fuel Cells For Airplanes Make No Sense

This is an old technology that some people hope to dust off for electric vehicles, without any success to date. They were proposed in the 1960s, have been working since at least the early 1980s, but they aren’t commonly used today, outside of off-grid military applications. The lack of use should be a red flag for this technology, but it keeps being proposed for electric vehicles nonetheless.

Why isn’t it used? Well, it’s not a battery, for starters. You have to get specially prepared aluminum electrolytes delivered. Once they oxidize in the fuel cell, delivering their energy, you have to send them back to an aluminum smelter for reprocessing, repackaging as an electrolyte and get them shipped back. The fuel supply chain would be doubled, with masses of ‘charged’ and ‘discharged’ aluminum going back and forth between wherever you need the fuel and smelters.

Energy density of aluminum air batteries is high, but there is exactly zero supply chain for aluminum electrolytes at the scale of airline energy requirements. If Wright goes down this path, the entire fuel supply will be a bespoke one-off at first, with very high costs. There are other technical problems that are somewhat being resolved with the technology as well, such as their tendency to self-corrode.

Another issue is that they are aren’t scaled to anywhere near aircraft requirements yet. The biggest commercial product I could find was an Alibaba listing for a $16,000 32 kWh emergency power supply for remote areas. As Wright’s whitepaper points out, the requirement is about 10 MWh, about 300 times as much.

The white paper’s projected future energy density of aluminum air batteries is 2,000 Wh/kg or 0.002 MWh/kg. 10 MWh would require about 5,000 kg of aluminum at that future date. However, the highest demonstrated is 1,350 Wh/kg, so in the next few years, that’s actually going to be 7,400 kg or 7.4 tons of aluminum electrolytes for every 400 mile flight.

Aluminum smelters in Canada courtesy Government of Canada

As this map of Canada shows, aluminum smelters are not evenly distributed. They require huge amounts of electricity and are typically located near hydroelectric dams. Since aluminum is a durable product, shipping it once a long distance is fine, but imagine that every single 400-mile airplane flight requires you to use trucks and trains to ship 7.4 tons of aluminum hundreds of miles in each direction. The fuel will end up traveling three to five times as far as every plane flight, with every mile traveled accruing additional costs and carbon debts.

The Wright white paper also seems to think that loading aluminum catalyst cartridges is the same as loading luggage. There are innumerable mechanical concerns with that thinking that are elided completely, but suffice it to say, a few tons of catalyst that has to get into and out of a fuel cell is not the same as a container of suitcases that just sit in the hold for the duration.

Then there’s the final problem with aluminum fuel cells. They are high density, but low efficiency. They are projected to have a fuel-cell to motor efficiency of around 20%. But as soon as you are shipping tons of aluminum back and forth for potentially hundreds of miles for every flight, the efficiency drops further. Well-to-wheel numbers don’t seem to have been created by anyone for this technology, but I can’t imagine it getting above 10%.

Aluminum air batteries don’t seem remotely viable.

Battery Aviation Haters Do Very Bad Analyses

As I mentioned, someone reacted to my discussion with Heart Aerospace’s Forslund by pointing me at a critique by a self-proclaimed aviation industry analyst. Remarkably, this analyst found hydrogen to be the real answer despite the obvious economics I outlined in part 1, and specifically critiqued Heart Aerospace’s range calculations for its ES-19. Reading through their analysis I found two glaring errors immediately.

The first is that they used the fuel efficiency of modern jet turbofan engines at cruise as the basis for the critique. There are two problems with this. Heart Aerospace’s target is not 30,000-foot operating altitudes for a thousand miles, but much lower altitude, maximum 250-mile hops, and mostly shorter. The turbofan efficiency, as Forslund points out, is very poor on the ground, and ground taxiing can be easily 10% of the flight time for short flights. That’s why the industry has dropped most short hop flights. It’s just too expensive to run modern turbofan planes on them. That turns into an error of over 80% in the analyst’s calculations.

The second failure is in their assertion of 160 Wh/kg as the maximum energy density of lithium-ion batteries that will work in airplanes, with the requirement being 400 Wh/kg. The Tesla 4680 cell is already at 380 Wh/kh, and Tesla’s older batteries were at 260 Wh/kg. Tesla’s older batteries are completely certifiable for aviation, so even assuming that earlier energy density, that’s another 63% error at minimum, and more likely 138% with 4680-level technology and of course worse with even the simplest projections of ongoing improvements in batteries. The analyst claims, with exactly zero evidence or supporting material, that higher density lithium-ion batteries can’t be certified for aviation, when Teslas drive over 12,000-foot high mountain passes regularly, above the operating altitude of Heart’s target market.

The third failure is the analyst’s cycle time for lithium-ion. Both Heart Aerospace and the analyst suggest 1,500 cycles, the analyst as a maximum, and Forslund et al., as a minimum, but as the analyst artificially triples the battery, it becomes uneconomic in their analysis, but is completely reasonable in Heart’s. Unsurprisingly, with the addition of 3x the mass of lithium-ion battery theoretically required for the ES-19 design parameters, it turns out to be unworkable.

By comparison to hydrogen or aluminum, rechargeable lithium-ion batteries stay in the plane, get recharged with ubiquitously available electricity and have 80% well-to-wheel — wind-turbine-to-propeller? — efficiencies, 8 times as high. This means that the 19% of operating expenses that aviation spends on fuel goes way down, instead of going way up, leaving lots of money for battery replacements every few years. As a case in point, one early adopter of a Pipistrel electric flight trainer say their fuel costs dropped by 95%.

The analyst is clearly so deeply biased that they will pick completely unreasonable numbers for their comparison, and then claim justification for their opinion. As I said, “self-proclaimed.”

And so, part 2. Aluminum air batteries don’t get within an intercontinental flight of being a viable choice, and certainly not by Wright’s 2024 target date for first flight with one engine running on the new fuel. And those biased toward fuels other than batteries and biofuels use completely inappropriate assumptions to make their cases. In part 3, I’ll deal with why I’m bullish on biofuels for long-haul aviation.


 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 


 

Advertisement

 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

LinkedIn

Facebook

Read More

Source Here: cleantechnica.com

Power

Electric Car FAQs: Do EVs All Use the Same Plug?

Published

on

Electric cars are mostly like regular cars. You step on the pedal on the right and the car goes, you turn the wheel and the car turns, and the only real difference is what kind of fuel goes in it. We say stuff like that all the time. If we’re being completely honest, though, that’s only mostly true. 99% of the time the only difference is what kind of fuel goes into the car, but that last 1% probably needs explaining.

To provide that explanation, we’ve launched a new segment called “Electric Car FAQs” that hopes to answer those oddball questions that come up 1% of the time. Today’s question: do EVs all use the same plug?

EV FAQs: Do EVs All Use the Same Plug?

Even if you don’t know anything about how electric cars work, you could probably guess that they run on some kind of battery. You’d be right! That battery acts like a gas tank in a conventional car, storing “electric fuel” in reserve until it’s needed. You even fill it up like a gas tank — the main difference is you’re plugging the car into an EV charging station, not a gas pump. Sounds easy, right?

The good news is that it is easy to plug in your EV! But one thing that many people don’t realize is that there are different types of electric car plugs, and different types of chargers. Each one has different capabilities, costs, and charging speeds, and that’s where some confusion can sneak into the conversation.

As ever, we’re here to clear things up for you — starting with the chargers.

EV Charging Levels

Image courtesy of GM.

Level 1 is basically a standard 3-prong outlet, like the kind you have your phone charger plugged into. These work the same way, providing a slow trickle of energy to your electric car battery to basically replace a few miles of driving. You’ll usually get 2-4 miles of range per hour of charging, and it usually won’t increase your monthly electric bill by a noticeable amount, making level 1 home charging an extremely cost-effective charging solution.

Level 2 charging stations use 208 or 240 volts of electricity — more like the big plug your clothes dryer is plugged into. These are to charge your vehicle up to 10 times faster than a level 1 station. If you drive more than a few miles per day and want the convenience of knowing you’re starting each day with “a full tank” from charging at home, installing a level 2 charger in your garage is the way to go, and you can expect to get up to 200 miles of range from an 8 hour, overnight charge.

Because level 2 power is usually available in most commercial locations, many businesses that want to incorporate EV charging stations into their parking lot deploy level 2 charging stations. Whether you’re putting a level 2 one in at your home or at your business, be sure to check with your local utility for rebates and incentives to help keep costs down.

Level 3 DC Fast-Charging

DC fast-charging plugs are typically considered “level 3” and have significantly faster charging speeds than the level 1 or level 2 “AC” chargers. With enough juice, a DC fast charger can charge an electric car battery to 80% from almost empty in about 20 minutes (depending on the vehicle) … but this is a good time to tell you that not all “level 3” charging is created equal.

“Level 3” is a generic term that used to be quite clear. As technology has advanced, though, it’s a term that has led to more confusion that anything else, because it could mean anything from around 25kW of power to more than 300kW (!?).

That’s why some electric car owner apps like Chargeway have “split” Level 3 charging into levels — 3, 4, 5, 6, and 7 — to highlight that difference. At a local (well, local to Chicago, anyway) “level 3” station in Chargeway, it would take about three and a half hours to go from 10% to a 90% charge in a car like the 2021 Ford Mustang Mach E

Screencap from Chargeway app.

… at another local charger, a “level 6” to use Chargeway’s naming system — the time drops significantly. You can get the exact same charge in under 40 minutes (below), instead of (quick math) 2015 minutes. That’s a lunch stop or a grocery run, and knowing ahead of time what to expect when you get to a fast charger is going to make a big difference in your experience.

Screencap from Chargeway app.

The National Auto Dealers’ Association recently partnered with Chargeway to help train electric car dealers to use this more intuitive “level 1–7” power system as they talk about EV chargers … but they also want to use Chargeway to help simplify the conversion about plugs, which we’ll get to next.

Different Types of EV Plugs

CHAdeMO was the first type of DC fast-charging system on the market, and helped early e-mobility adopters reduce range anxiety. Cars with CHAdeMO plugs can fast charge a battery to 80% in about 60 minutes at a rate of roughly 2 miles of range added per minute of charging.

Image by CleanTechnica.

Today, the Nissan LEAF and Mitsubishi Outlander PHEV (shown, above) are the most common CHAdeMO vehicles, but even they are switching to the more common J1772 with their next generation of electric cars. Still, there are hundreds of thousands of used EVs on the market that use this standard, so it’s worth knowing about.

Most “modern” electric vehicles (the notable exceptions being cars built by Tesla) use the J1772, and the J1772 plug can charge your car using 120, 208, or 240 volts of electricity, depending on the type of charger station you’re using. These are those “level 1” and “level 2” we talked about earlier, and it’s the most common type of charging you’ll find.

For fast charging, those same cars use the SAE Standard Combined Charging System, or CCS. Developed by the society of automotive engineers (SAE, natch), this is the most widely used fast charging standard globally, and works with most fast chargers — just not, currently, the Tesla Supercharger Network, will.

Tesla cars on the Tesla Supercharger network use proprietary standards that, while also called “level 3” by most networks, typically fall into the “level 6” or “level 7” range offered by Chargeway. Tesla drivers have exclusive access to the national network of Tesla Superchargers to charge their vehicles, but they have to use an adapter to charge at other DC fast-charging stations that use CCS or CHAdeMO plugs and at Level 1 and Level 2 charging stations.

Tesla Supercharger in Florida, by Zach Shahan/CleanTechnica.

Colors & Numbers

We already talked about the way that a charging app displays information can have a huge impact on your expected wait times while you’re charging. Chargeway also simplifies the process of finding charging stations that work for your car. Instead of showing a “generic” charging map that shows all the chargers in your neighborhood, Chargeway only shows you the stations that will work for your specific car, reducing anxiety and making it easier to “fill up faster” with electric fuel.

Blue for CHAdeMO, green for J1772/CCS, and red for Tesla.

Image courtesy of Chargeway.

Higher numbers equal faster charging, so if you have a Chevy Bolt, that’s a Green 4. A Mustang Mach-E? That’s a Green, too, but it will go up to level 6. A brand-new Tesla Model S? Red 7.

It’s intuitive, and it’s the language that many dealers will soon be using. “Because the 16,000+ NADA member dealers represent nearly all the major automotive brands, their adoption of Chargeway will create a de facto ‘standard dictionary’ of EV charging terms,” reads the official NADA press release. “‘Green’ plugs, ‘Level 6’ chargers, etc. That will make it easier for EV dealers and buyers to communicate, regardless of brand.”

With all that said, we hope we’ve made it clearer for you to understand the different types of EV charging and chargers. If you want to hear about more clever ways to visualize or talk about EVs, you can tune into Chargeway’s founder, Matt Teske, on the Electrify Expo podcast with CleanTechnica’s Jo Borras (me!) on Apple Podcasts, Spotify, or anywhere you get your podcasts.

Original content from CleanTechnica.


 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 


 

Advertisement

 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

LinkedIn

Facebook

Read More

Source: cleantechnica.com

Continue Reading

Power

Diess Survives Volkswagen Board Review — for Now

Published

on

Herbert Diess, CEO of the Volkswagen Group, was put under the microscope recently after he suggested publicly that as many as 30,000 manufacturing jobs at the company could be lost if it fails to meet the challenge from competitors, principally Tesla. His remarks were interpreted by some, especially Daniela Cavallo, the head of the works council, as a threat to fire 30,000 employees.

Diess further inflamed the passions of company insiders when he invited Elon Musk to call in to a meeting of 200 Volkswagen senior managers. That annoyed just about everyone in the company who wasn’t already annoyed by the job cuts thing and resulted in a call to convene the rarely use mediation committee of the Volkswagen management board. That committee is made up of representatives from the company’s largest shareholders as well as the head of the works council (worker union).

A meeting was held last Tuesday but no announcements were made afterwards. The only things Reuters could uncover about the meeting were two statements from anonymous sources. The first said, “This topic is so hot, it is on a knife edge. I can’t say anything further.” The other said, “As expected, there is nothing new.” The most that can be gleaned from this kerfuffle is that Diess has been called on the carpet and warned that he must change his management style or face possible termination.

Changing his management style appears to mean he should stop pissing off the works council. Cavallo is on record as saying, “We’re tired of hearing time and again that the works council is apparently only concerned with preserving the status quo.” She insists that all the workers and labor representatives are fully supportive of the proposals Diess has put forth to speed up the transition to electric vehicles, including a major rethink of how they build cars at its largest factory, in Wolfsburg.

The crux of Diess’ recent remarks is that Tesla will soon be building electric cars in Grünheide in much less time with fewer workers. Stripping away all the emotional content of his recent remarks, it should be intuitively obvious to the most casual observer that you can’t compete successfully if your cars cost more to build than the cars your competitor is making. It’s as plain as the face on your nose, and yet Diess has been called to account for saying out loud what should be evident to everyone.

Sources tell Reuters that the committee is working to craft a position that will satisfy all parties — which means it will probably satisfy no one. Diess will be asked to change his management style, which is a little like asking a leopard to change its spots, while new board members will be announced, new assurances on job prospects for employees will be given, and new investment plans for Volkswagen Group will be put forth.

There are rumors — unfounded, unconfirmed, and uncorroborated — that if Diess is tossed overboard, he could wind up being tapped to run the automotive division of Tesla, which would allow Musk to focus his considerable talents on other things like SpaceX, energy storage, and tangling with Bernie Sanders on Twitter.

Part of Diess’ problems may stem from the fact that he is an outsider. From 1996 to 2015, he worked at BMW, where he was a member of its management board. Volkswagen, like any major corporation, has a culture of promoting from within. No doubt, bringing Diess in from outside the company — and from a competitor in the German auto industry at that — rankled lots of loyal Volkswagen managers who maybe thought they should have been promoted when the diesel cheating scandal hit in 2015 and Martin Winterkorn was given the heave ho.

Sometimes it’s not what you say, it’s how you say it. Has Diess learned his lesson? “We’ll see,” said the Zen master.


 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 


 

Advertisement

 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

LinkedIn

Facebook

Read More

Article: cleantechnica.com

Continue Reading

Power

Hydro Versus Batteries: Tasmania Pushes Its Undersea Cable Plan

Published

on

There is no question that hydroelectric power is a wonderful thing. It’s green, it’s renewable, it’s emissions-free, and it’s relatively inexpensive.  There is also no question that water can be stored behind a dam for days, weeks, months, or even years before it is used to spin turbines that generate electricity.

Tasmania has an abundance of hydroelectric power — quite a bit more than it needs, actually. It would very much like to sell some of its excess electricity to the rest of Australia. The plan put forward by Hydro Tasmania and TasNetworks is known as the Marinus Link — a 500-kilometer-long undersea transmission line linking Tasmania to Melbourne. From there it would connect to the utility grid on the mainland, making Tasmania Australia’s national battery, so to speak.

But there’s a flaw in the Hydro Tasmania plan. According to a report written by the highly regarded Dr. Bruce Mountain for the Victoria Energy Policy Center, the Marinus Link is a money-losing proposition that will only make less economic sense in coming years as the cost of grid scale battery storage continues to decline. Here’s a quote from the Executive Summary that pretty much says it all.

“The main conclusions of that report are that 1,500 MW of four-hour battery can be provided for less than half the cost of Marinus Link; that the same capacity of six-hour battery can be provided for 79% of the cost of Marinus Link and that 1,500 MW of eight-hour battery storage is still cheaper than Marinus Link.

“In other words, even if Hydro Tasmania is able to provide, for no additional cost, 1,500 MW that it could export to Victoria day-in day-out for eight hours at a stretch for the foreseeable future, it will still be cheaper to build 1,500 MW of batteries in Victoria rather than to build Marinus Link. Of course the Tasmanian electrical system has no-where near the power or energy capability needed to provide 1,500 MW of supply to Victoria for 8 hours every day and so many billions will be needed to expand its storages and energy production in Tasmania in order to be able to provide the capacity that Marinus Link claims to offer.”

The ending of the report is just as brutal. “We now feel able to conclude that not only does Marinus Link have no chance of competing with battery alternatives but that if Hydro Tasmania develops pumped hydro capacity in Tasmania it is very likely that, like Snowy 2.0, it will be stranded from the outset.”

Cuanto Cuesta?

So how much would the Marinus Link cost? The proposal calls for building two new 750-megawatt undersea power cables between Tasmania and Victoria at a cost of about $3.5 billion. Hydro Tasmania, which is owned by the state of Tasmania, plans to store power in Tasmanian dams by releasing water to generate electricity for export to Victoria when prices are high, and pumping the water back into dams when power prices are low.

According to MSN, Mountain claims that if the Marinus Link is funded by the Tasmanian or Commonwealth governments, taxpayers will be left paying for an asset that would cost more to build than it can earn. “It would be placing a dead weight on the shoulders of the people of Tasmania, if indeed the people of Tasmania bear most of the cost. If it’s borne by the Commonwealth in some way, it’ll be placing a burden on all taxpayers and energy consumers depending on how the bid ends up, when you build an asset that can’t compete.”

Mountain also expressed skepticism about the the long term benefits of construction jobs associated with the projects. “It would be much better for the community if the government simply gave that money out — frankly, it would be less of a loss for the community. Building a white elephant, a dead weight loss, entrenches disadvantage.” No namby-pamby, wishy-washy words from the esteemed Dr. Mountain. Better to take that money and just throw it in the street.

The Case For Marinus Link

Hydro Tasmania and TasNetworks aren’t giving up the fight. TasNetworks general manager for Marinus Link Bess Clark says both batteries and pumped hydro storage will be needed as Australia’s energy market transitions away from fossil fuels. “Marinus Link presents a once in a generation opportunity to double Tasmania’s clean energy, helps combat climate change, puts downward pressure on power prices and creates thousands of local jobs,” she says, before adding that modeling by the Australian Energy Market Operator shows the Marinus Link will be a key part of Australia’s energy grid in the future.

A spokesman for Hydro Tasmania said batteries wouldn’t be able to meet all of Australia’s energy storage requirements and that deep storage like pumped hydro will be needed. “It’s not a question of having one or the other. We will need all the relevant, cost competitive technologies to play their part to ensure all Australians have a power system that is reliable, secure and affordable,” he said.

Last week the Tasmanian Chamber of Commerce and Industry threw its “wholehearted support” behind the Marinus Link project. “We know that this project will be fantastic not just for employment across the state over the next 50 years but also for the growth of business within Tasmania,” TCCI CEO Michael Bailey said.

All Of The Above

There are two sides to this debate and they both have points in their favor. Pumped hydro can supply power far longer than any grid storage battery in existence. A battery can react in milliseconds; pumped hydro cannot. One of the benefits of battery storage is its frequency and voltage regulation capability. Both save grid operators money but are services pumped hydro cannot provide.

Then there is the question of timing. Bruce Mountain tells the Sydney Morning Herald the Victorian Big Battery, composed of dozens of Tesla Megapacks, will be commissioned shortly, while a similar installation at Jeeralan should be ready by 2026. There are four more storage battery projects in the pipeline as well. A further four major batteries are likely to proceed. Those will all be in place and operational before the Marinus Link becomes operational.

“Battery storage capacity will be built and operational in Victoria long before Marinus Link and the Battery of the Nation developments in Tasmania are close to operational,” the VEPC report says. “Marinus Link continues to have no prospect of competing against battery alternatives in Victoria.” Mountain adds, “Considering the much higher efficiency and responsiveness of chemical batteries than pumped hydro, if pumped hydro is developed in Tasmania it is surely likely that it, not batteries, will sit idle.”

“It’s not a question of having one or the other,” Hydro Tasmania counters. “We will need all the relevant, cost-competitive technologies to play their part to ensure all Australians have a power system that is reliable, secure and affordable.” Tasmania also is investing heavily in the power of wind, something it also has in abundance.

The Trouble With Transmission

Solar power advocates like to say that a gigantic solar farm in a small corner of the Sahara desert could power all of Europe and the UK — if there were transmission lines connecting the two areas. In the US, some people dream of New Yorkers getting solar power from California after the sun sets on the Big Apple. That could happen if there were transcontinental high voltage transmission lines.

That being said, transmission lines can be hugely expensive to construct and maintain. They are also subject to disruption from any number of causes — wind, earthquakes, wild fires, even malicious damage. The world is learning a hard lesson about making stuff in one place for consumption in another place using a flotilla of cargo ships to connect the two. Anything that can go wrong often does go wrong and at the worst possible time. Just ask Puerto Rico about relying on distant generating stations to power its major cities.

Pumped hydro is an important piece of the energy storage puzzle but it can’t just be plunked down close to the places where demand for electrical energy is high. In theory, battery storage facilities can be sited almost anywhere. Ideally, they can go where retired thermal generating stations are located, places with the advantage of already having the connections needed to feed the stored power into the electrical grid.

Planning For The Future Is Hard

The objection is not to Tasmania’s abundant hydro power. The objection is the cost of getting it to distant markets at competitive cost. Then there a time considerations. What may seem like a good idea today may not look quite so appealing a few years down the road when the economics tilt more in favor of one solution than another. When there is not an unlimited supply of money, it is best to invest what you have in solutions that will be fiscally viable for the longest period of time, not one that will be come economically noncompetitive before the end of its useful life.

Perhaps Tasmania would be wise to invest its dollars in technologies that turn its excess electricity into green hydrogen or ammonia, which could then be exported at reasonable cost to anywhere in the world. The issue is not energy storage. The issue is energy transmission. It will be interesting to see how this plays out in Australia, where wise energy planning at the federal level appears to be an alien concept.


 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 


 

Advertisement

 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

LinkedIn

Facebook

Read More

Source: cleantechnica.com

Continue Reading

Trending

OMNT.com