Connect with us

Power

CICERO Report: Climate Modeling Is Hard, but We Are Heading for Disaster

Published

on

There is a lot of happy talk from global leaders trying to put a brave face on the COP26 fiasco. Prime Minister Boris Johnson declared after the conference, “[T]he world is undeniably heading in the right direction.” John Kerry, the special climate envoy for the United States added, “We are in fact closer than we have ever been before to avoiding climate chaos.”

Neither statement is true. The latest study from CICERO, the Center For International Climate Research in Oslo, Norway, makes two points. One, predicting what the Earth’s climate will be like in 10 years from now is immensely difficult. Two, trying to see through a fog of numbers into the middle future — 2100, for instance — is an incredibly daunting task.

Imagine the Earth is a giant billiard table with trillions of balls on it. Trying to calculate what ball number 2,345,675,964 will do in 50 years if you hit ball number one with the cue ball today is impossible. All you can hope for is a range of possibilities and to narrow that range as much as you can.

In its latest study, which is published in the journal Nature Climate Change, the authors argue that the business as usual case will lead to a rise in global temperatures of between 2.3º C and 2.9º C by 2100. Plugging in the numbers based on the pledges made before and during COP26, temperatures are projected to rise 2.2º C to 2.7º C. The range expands to 1.7 to 3.8° C when it includes the uncertainty in the climate response. At the upper end of that range, global average temperatures will be high enough to wreak unimaginable destruction on the environment and humanity.

If people were told we were about to explode 10,000 nuclear bombs all around the world, they would be rushing around in a panic — weeping, screaming, and tearing their clothes. But tell them warmer average temperatures will have a similar effect and they shrug. “Oh, well,” they say. “What can you do? Is it time for Jeopardy yet?” Here is the abstract for the new study:

“Most of the integrated assessment modelling literature focuses on cost-effective pathways towards given temperature goals. Conversely, using seven diverse integrated assessment models, we project global energy CO2 emissions trajectories on the basis of near-term mitigation efforts and two assumptions on how these efforts continue post-2030.

“Despite finding a wide range of emissions by 2050, nearly all the scenarios have median warming of less than 3 °C in 2100. However, the most optimistic scenario is still insufficient to limit global warming to 2 °C. We furthermore highlight key modelling choices inherent to projecting where emissions are headed.

“First, emissions are more sensitive to the choice of integrated assessment model than to the assumed mitigation effort, highlighting the importance of heterogeneous model intercomparisons. Differences across models reflect diversity in baseline assumptions and impacts of near-term mitigation efforts.

“Second, the common practice of using economy-wide carbon prices to represent policy exaggerates carbon capture and storage use compared with explicitly modelling policies.”

That last paragraph puts us on notice that all the talk of carbon capture by the fossil fuel companies is a steaming load of horse-puckey. In today’s email from Bloomberg Green, author Akshat Rathi says, “The lower end of Cicero’s forecast would put the world very close to the most ambitious goal under the Paris Agreement to keep global temperature rise below 1.5° C. That would result in many more extreme weather events than we face currently at 1.1°C of warming, but it’s likely to avoid triggering some irreversible changes such as the collapse of the West Antarctic ice sheet.

“The upper end of the forecast would see the world blow past the less ambitious Paris goal of limiting warming to 2°C. A planet that’s nearly 4°C hotter would make vast parts of Earth uninhabitable, triggering mass migration of hundreds of millions of people and throwing the global economy into a tailspin.”

Better Modeling, But Still Dire Consequences

“During COP26 it was confidently communicated that current policies would lead to 2.7° C of warming in 2100 and emission pledges to 2.4° C of warming, while we find that the uncertainties are much greater and that the answer depends on what model is used,” says Ida Sognnaes, lead author of the study.

“Most countries have specified policies or pledges to around 2030, but how the implied effort is extrapolated forward through to 2100 is a fundamental uncertainty,” adds co-author Glen Peters. The study tried to harmonize as many input data and assumptions as possible to isolate the effects of model diversity. Even though it used seven models, the spread between their predictions remained significant.

“The large model spread highlights the important role of tools used to inform climate policies and pledges, and the critical need to employ diversified toolboxes,” says Alexandros Nikas, another co-author. “This study is one of the few to focus on the challenge of extrapolating policies from 2030 to 2100.”

“To date, integrated assessment modelling has overwhelmingly focused on what needs to be done to reach pre-defined temperature targets. Here we instead shine a light on where current efforts are taking us, and it reveals a great deal of uncertainty, depending on the modelling approach,” says co-author Ajay Gambhir. “We could be on a path to just over 2°C, or just under 3°C, with very different climate consequences in each case.”

The large uncertainties indicate that more effort is required to avoid dire global warming outcomes. “The large uncertainties indicate that current policies and policy pledges can still lead to warming outcomes of 3°C in 2100,” says Sognnaes. “The false precision to climate outcomes given during COP 26 may lead countries to believe they are making good progress, when the opposite may indeed be the case.” Peters adds, “Predicting emissions in 2030 is difficult enough but extrapolating to 2100 is heroic and requires a good dose of humility to avoid giving false precision.”

Some Progress, But Not Enough

“To be sure, there’s definitely been progress,” Rathi writes in Bloomberg Green. “Before the Paris accord was signed, the Emissions Gap report from the United Nations projected possible warming to be between 3°C and 7°C by the end of the century.

“Thanks to better climate modeling, cheaper green technologies, and more willingness from governments to reduce emissions, the world is no longer on a path of utter destruction. And yet the worse-case outcome of apocalyptic 4°C warming still remains possible. That means there is little time to rest on the gains made at COP 26.”

The Takeaway

The discussion of rising temperatures is important, but it ignores the social consequences of what is to come. Anthropologists believe that during the last Ice Age that ended about 12,000 years ago, humans in Europe withdrew ahead of the advancing ice sheet and settled near the relatively temperate Mediterranean Sea. As the ice receded, they moved back north again.

Anyone who thinks global heating is not going to lead to similar population shifts is naive. There are bound to be titanic struggles between people who are already settled in areas less affected by floods, famines, and forest fires and those seeking to move there. Armed conflict is inevitable as hatred of “the other” becomes the dominant theme of societies around the world.

Perhaps a nuclear winter will follow, which at least will give the Earth a chance to cool off a bit, even if billions are exterminated in the process. Every cloud has a silver lining.


 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 


 

Advertisement

 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

LinkedIn

Facebook

Read More

Original Post: cleantechnica.com

Power

Electric Car FAQs: Do EVs All Use the Same Plug?

Published

on

Electric cars are mostly like regular cars. You step on the pedal on the right and the car goes, you turn the wheel and the car turns, and the only real difference is what kind of fuel goes in it. We say stuff like that all the time. If we’re being completely honest, though, that’s only mostly true. 99% of the time the only difference is what kind of fuel goes into the car, but that last 1% probably needs explaining.

To provide that explanation, we’ve launched a new segment called “Electric Car FAQs” that hopes to answer those oddball questions that come up 1% of the time. Today’s question: do EVs all use the same plug?

EV FAQs: Do EVs All Use the Same Plug?

Even if you don’t know anything about how electric cars work, you could probably guess that they run on some kind of battery. You’d be right! That battery acts like a gas tank in a conventional car, storing “electric fuel” in reserve until it’s needed. You even fill it up like a gas tank — the main difference is you’re plugging the car into an EV charging station, not a gas pump. Sounds easy, right?

The good news is that it is easy to plug in your EV! But one thing that many people don’t realize is that there are different types of electric car plugs, and different types of chargers. Each one has different capabilities, costs, and charging speeds, and that’s where some confusion can sneak into the conversation.

As ever, we’re here to clear things up for you — starting with the chargers.

EV Charging Levels

Image courtesy of GM.

Level 1 is basically a standard 3-prong outlet, like the kind you have your phone charger plugged into. These work the same way, providing a slow trickle of energy to your electric car battery to basically replace a few miles of driving. You’ll usually get 2-4 miles of range per hour of charging, and it usually won’t increase your monthly electric bill by a noticeable amount, making level 1 home charging an extremely cost-effective charging solution.

Level 2 charging stations use 208 or 240 volts of electricity — more like the big plug your clothes dryer is plugged into. These are to charge your vehicle up to 10 times faster than a level 1 station. If you drive more than a few miles per day and want the convenience of knowing you’re starting each day with “a full tank” from charging at home, installing a level 2 charger in your garage is the way to go, and you can expect to get up to 200 miles of range from an 8 hour, overnight charge.

Because level 2 power is usually available in most commercial locations, many businesses that want to incorporate EV charging stations into their parking lot deploy level 2 charging stations. Whether you’re putting a level 2 one in at your home or at your business, be sure to check with your local utility for rebates and incentives to help keep costs down.

Level 3 DC Fast-Charging

DC fast-charging plugs are typically considered “level 3” and have significantly faster charging speeds than the level 1 or level 2 “AC” chargers. With enough juice, a DC fast charger can charge an electric car battery to 80% from almost empty in about 20 minutes (depending on the vehicle) … but this is a good time to tell you that not all “level 3” charging is created equal.

“Level 3” is a generic term that used to be quite clear. As technology has advanced, though, it’s a term that has led to more confusion that anything else, because it could mean anything from around 25kW of power to more than 300kW (!?).

That’s why some electric car owner apps like Chargeway have “split” Level 3 charging into levels — 3, 4, 5, 6, and 7 — to highlight that difference. At a local (well, local to Chicago, anyway) “level 3” station in Chargeway, it would take about three and a half hours to go from 10% to a 90% charge in a car like the 2021 Ford Mustang Mach E

Screencap from Chargeway app.

… at another local charger, a “level 6” to use Chargeway’s naming system — the time drops significantly. You can get the exact same charge in under 40 minutes (below), instead of (quick math) 2015 minutes. That’s a lunch stop or a grocery run, and knowing ahead of time what to expect when you get to a fast charger is going to make a big difference in your experience.

Screencap from Chargeway app.

The National Auto Dealers’ Association recently partnered with Chargeway to help train electric car dealers to use this more intuitive “level 1–7” power system as they talk about EV chargers … but they also want to use Chargeway to help simplify the conversion about plugs, which we’ll get to next.

Different Types of EV Plugs

CHAdeMO was the first type of DC fast-charging system on the market, and helped early e-mobility adopters reduce range anxiety. Cars with CHAdeMO plugs can fast charge a battery to 80% in about 60 minutes at a rate of roughly 2 miles of range added per minute of charging.

Image by CleanTechnica.

Today, the Nissan LEAF and Mitsubishi Outlander PHEV (shown, above) are the most common CHAdeMO vehicles, but even they are switching to the more common J1772 with their next generation of electric cars. Still, there are hundreds of thousands of used EVs on the market that use this standard, so it’s worth knowing about.

Most “modern” electric vehicles (the notable exceptions being cars built by Tesla) use the J1772, and the J1772 plug can charge your car using 120, 208, or 240 volts of electricity, depending on the type of charger station you’re using. These are those “level 1” and “level 2” we talked about earlier, and it’s the most common type of charging you’ll find.

For fast charging, those same cars use the SAE Standard Combined Charging System, or CCS. Developed by the society of automotive engineers (SAE, natch), this is the most widely used fast charging standard globally, and works with most fast chargers — just not, currently, the Tesla Supercharger Network, will.

Tesla cars on the Tesla Supercharger network use proprietary standards that, while also called “level 3” by most networks, typically fall into the “level 6” or “level 7” range offered by Chargeway. Tesla drivers have exclusive access to the national network of Tesla Superchargers to charge their vehicles, but they have to use an adapter to charge at other DC fast-charging stations that use CCS or CHAdeMO plugs and at Level 1 and Level 2 charging stations.

Tesla Supercharger in Florida, by Zach Shahan/CleanTechnica.

Colors & Numbers

We already talked about the way that a charging app displays information can have a huge impact on your expected wait times while you’re charging. Chargeway also simplifies the process of finding charging stations that work for your car. Instead of showing a “generic” charging map that shows all the chargers in your neighborhood, Chargeway only shows you the stations that will work for your specific car, reducing anxiety and making it easier to “fill up faster” with electric fuel.

Blue for CHAdeMO, green for J1772/CCS, and red for Tesla.

Image courtesy of Chargeway.

Higher numbers equal faster charging, so if you have a Chevy Bolt, that’s a Green 4. A Mustang Mach-E? That’s a Green, too, but it will go up to level 6. A brand-new Tesla Model S? Red 7.

It’s intuitive, and it’s the language that many dealers will soon be using. “Because the 16,000+ NADA member dealers represent nearly all the major automotive brands, their adoption of Chargeway will create a de facto ‘standard dictionary’ of EV charging terms,” reads the official NADA press release. “‘Green’ plugs, ‘Level 6’ chargers, etc. That will make it easier for EV dealers and buyers to communicate, regardless of brand.”

With all that said, we hope we’ve made it clearer for you to understand the different types of EV charging and chargers. If you want to hear about more clever ways to visualize or talk about EVs, you can tune into Chargeway’s founder, Matt Teske, on the Electrify Expo podcast with CleanTechnica’s Jo Borras (me!) on Apple Podcasts, Spotify, or anywhere you get your podcasts.

Original content from CleanTechnica.


 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 


 

Advertisement

 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

LinkedIn

Facebook

Read More

Source: cleantechnica.com

Continue Reading

Power

Diess Survives Volkswagen Board Review — for Now

Published

on

Herbert Diess, CEO of the Volkswagen Group, was put under the microscope recently after he suggested publicly that as many as 30,000 manufacturing jobs at the company could be lost if it fails to meet the challenge from competitors, principally Tesla. His remarks were interpreted by some, especially Daniela Cavallo, the head of the works council, as a threat to fire 30,000 employees.

Diess further inflamed the passions of company insiders when he invited Elon Musk to call in to a meeting of 200 Volkswagen senior managers. That annoyed just about everyone in the company who wasn’t already annoyed by the job cuts thing and resulted in a call to convene the rarely use mediation committee of the Volkswagen management board. That committee is made up of representatives from the company’s largest shareholders as well as the head of the works council (worker union).

A meeting was held last Tuesday but no announcements were made afterwards. The only things Reuters could uncover about the meeting were two statements from anonymous sources. The first said, “This topic is so hot, it is on a knife edge. I can’t say anything further.” The other said, “As expected, there is nothing new.” The most that can be gleaned from this kerfuffle is that Diess has been called on the carpet and warned that he must change his management style or face possible termination.

Changing his management style appears to mean he should stop pissing off the works council. Cavallo is on record as saying, “We’re tired of hearing time and again that the works council is apparently only concerned with preserving the status quo.” She insists that all the workers and labor representatives are fully supportive of the proposals Diess has put forth to speed up the transition to electric vehicles, including a major rethink of how they build cars at its largest factory, in Wolfsburg.

The crux of Diess’ recent remarks is that Tesla will soon be building electric cars in Grünheide in much less time with fewer workers. Stripping away all the emotional content of his recent remarks, it should be intuitively obvious to the most casual observer that you can’t compete successfully if your cars cost more to build than the cars your competitor is making. It’s as plain as the face on your nose, and yet Diess has been called to account for saying out loud what should be evident to everyone.

Sources tell Reuters that the committee is working to craft a position that will satisfy all parties — which means it will probably satisfy no one. Diess will be asked to change his management style, which is a little like asking a leopard to change its spots, while new board members will be announced, new assurances on job prospects for employees will be given, and new investment plans for Volkswagen Group will be put forth.

There are rumors — unfounded, unconfirmed, and uncorroborated — that if Diess is tossed overboard, he could wind up being tapped to run the automotive division of Tesla, which would allow Musk to focus his considerable talents on other things like SpaceX, energy storage, and tangling with Bernie Sanders on Twitter.

Part of Diess’ problems may stem from the fact that he is an outsider. From 1996 to 2015, he worked at BMW, where he was a member of its management board. Volkswagen, like any major corporation, has a culture of promoting from within. No doubt, bringing Diess in from outside the company — and from a competitor in the German auto industry at that — rankled lots of loyal Volkswagen managers who maybe thought they should have been promoted when the diesel cheating scandal hit in 2015 and Martin Winterkorn was given the heave ho.

Sometimes it’s not what you say, it’s how you say it. Has Diess learned his lesson? “We’ll see,” said the Zen master.


 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 


 

Advertisement

 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

LinkedIn

Facebook

Read More

Article: cleantechnica.com

Continue Reading

Power

Hydro Versus Batteries: Tasmania Pushes Its Undersea Cable Plan

Published

on

There is no question that hydroelectric power is a wonderful thing. It’s green, it’s renewable, it’s emissions-free, and it’s relatively inexpensive.  There is also no question that water can be stored behind a dam for days, weeks, months, or even years before it is used to spin turbines that generate electricity.

Tasmania has an abundance of hydroelectric power — quite a bit more than it needs, actually. It would very much like to sell some of its excess electricity to the rest of Australia. The plan put forward by Hydro Tasmania and TasNetworks is known as the Marinus Link — a 500-kilometer-long undersea transmission line linking Tasmania to Melbourne. From there it would connect to the utility grid on the mainland, making Tasmania Australia’s national battery, so to speak.

But there’s a flaw in the Hydro Tasmania plan. According to a report written by the highly regarded Dr. Bruce Mountain for the Victoria Energy Policy Center, the Marinus Link is a money-losing proposition that will only make less economic sense in coming years as the cost of grid scale battery storage continues to decline. Here’s a quote from the Executive Summary that pretty much says it all.

“The main conclusions of that report are that 1,500 MW of four-hour battery can be provided for less than half the cost of Marinus Link; that the same capacity of six-hour battery can be provided for 79% of the cost of Marinus Link and that 1,500 MW of eight-hour battery storage is still cheaper than Marinus Link.

“In other words, even if Hydro Tasmania is able to provide, for no additional cost, 1,500 MW that it could export to Victoria day-in day-out for eight hours at a stretch for the foreseeable future, it will still be cheaper to build 1,500 MW of batteries in Victoria rather than to build Marinus Link. Of course the Tasmanian electrical system has no-where near the power or energy capability needed to provide 1,500 MW of supply to Victoria for 8 hours every day and so many billions will be needed to expand its storages and energy production in Tasmania in order to be able to provide the capacity that Marinus Link claims to offer.”

The ending of the report is just as brutal. “We now feel able to conclude that not only does Marinus Link have no chance of competing with battery alternatives but that if Hydro Tasmania develops pumped hydro capacity in Tasmania it is very likely that, like Snowy 2.0, it will be stranded from the outset.”

Cuanto Cuesta?

So how much would the Marinus Link cost? The proposal calls for building two new 750-megawatt undersea power cables between Tasmania and Victoria at a cost of about $3.5 billion. Hydro Tasmania, which is owned by the state of Tasmania, plans to store power in Tasmanian dams by releasing water to generate electricity for export to Victoria when prices are high, and pumping the water back into dams when power prices are low.

According to MSN, Mountain claims that if the Marinus Link is funded by the Tasmanian or Commonwealth governments, taxpayers will be left paying for an asset that would cost more to build than it can earn. “It would be placing a dead weight on the shoulders of the people of Tasmania, if indeed the people of Tasmania bear most of the cost. If it’s borne by the Commonwealth in some way, it’ll be placing a burden on all taxpayers and energy consumers depending on how the bid ends up, when you build an asset that can’t compete.”

Mountain also expressed skepticism about the the long term benefits of construction jobs associated with the projects. “It would be much better for the community if the government simply gave that money out — frankly, it would be less of a loss for the community. Building a white elephant, a dead weight loss, entrenches disadvantage.” No namby-pamby, wishy-washy words from the esteemed Dr. Mountain. Better to take that money and just throw it in the street.

The Case For Marinus Link

Hydro Tasmania and TasNetworks aren’t giving up the fight. TasNetworks general manager for Marinus Link Bess Clark says both batteries and pumped hydro storage will be needed as Australia’s energy market transitions away from fossil fuels. “Marinus Link presents a once in a generation opportunity to double Tasmania’s clean energy, helps combat climate change, puts downward pressure on power prices and creates thousands of local jobs,” she says, before adding that modeling by the Australian Energy Market Operator shows the Marinus Link will be a key part of Australia’s energy grid in the future.

A spokesman for Hydro Tasmania said batteries wouldn’t be able to meet all of Australia’s energy storage requirements and that deep storage like pumped hydro will be needed. “It’s not a question of having one or the other. We will need all the relevant, cost competitive technologies to play their part to ensure all Australians have a power system that is reliable, secure and affordable,” he said.

Last week the Tasmanian Chamber of Commerce and Industry threw its “wholehearted support” behind the Marinus Link project. “We know that this project will be fantastic not just for employment across the state over the next 50 years but also for the growth of business within Tasmania,” TCCI CEO Michael Bailey said.

All Of The Above

There are two sides to this debate and they both have points in their favor. Pumped hydro can supply power far longer than any grid storage battery in existence. A battery can react in milliseconds; pumped hydro cannot. One of the benefits of battery storage is its frequency and voltage regulation capability. Both save grid operators money but are services pumped hydro cannot provide.

Then there is the question of timing. Bruce Mountain tells the Sydney Morning Herald the Victorian Big Battery, composed of dozens of Tesla Megapacks, will be commissioned shortly, while a similar installation at Jeeralan should be ready by 2026. There are four more storage battery projects in the pipeline as well. A further four major batteries are likely to proceed. Those will all be in place and operational before the Marinus Link becomes operational.

“Battery storage capacity will be built and operational in Victoria long before Marinus Link and the Battery of the Nation developments in Tasmania are close to operational,” the VEPC report says. “Marinus Link continues to have no prospect of competing against battery alternatives in Victoria.” Mountain adds, “Considering the much higher efficiency and responsiveness of chemical batteries than pumped hydro, if pumped hydro is developed in Tasmania it is surely likely that it, not batteries, will sit idle.”

“It’s not a question of having one or the other,” Hydro Tasmania counters. “We will need all the relevant, cost-competitive technologies to play their part to ensure all Australians have a power system that is reliable, secure and affordable.” Tasmania also is investing heavily in the power of wind, something it also has in abundance.

The Trouble With Transmission

Solar power advocates like to say that a gigantic solar farm in a small corner of the Sahara desert could power all of Europe and the UK — if there were transmission lines connecting the two areas. In the US, some people dream of New Yorkers getting solar power from California after the sun sets on the Big Apple. That could happen if there were transcontinental high voltage transmission lines.

That being said, transmission lines can be hugely expensive to construct and maintain. They are also subject to disruption from any number of causes — wind, earthquakes, wild fires, even malicious damage. The world is learning a hard lesson about making stuff in one place for consumption in another place using a flotilla of cargo ships to connect the two. Anything that can go wrong often does go wrong and at the worst possible time. Just ask Puerto Rico about relying on distant generating stations to power its major cities.

Pumped hydro is an important piece of the energy storage puzzle but it can’t just be plunked down close to the places where demand for electrical energy is high. In theory, battery storage facilities can be sited almost anywhere. Ideally, they can go where retired thermal generating stations are located, places with the advantage of already having the connections needed to feed the stored power into the electrical grid.

Planning For The Future Is Hard

The objection is not to Tasmania’s abundant hydro power. The objection is the cost of getting it to distant markets at competitive cost. Then there a time considerations. What may seem like a good idea today may not look quite so appealing a few years down the road when the economics tilt more in favor of one solution than another. When there is not an unlimited supply of money, it is best to invest what you have in solutions that will be fiscally viable for the longest period of time, not one that will be come economically noncompetitive before the end of its useful life.

Perhaps Tasmania would be wise to invest its dollars in technologies that turn its excess electricity into green hydrogen or ammonia, which could then be exported at reasonable cost to anywhere in the world. The issue is not energy storage. The issue is energy transmission. It will be interesting to see how this plays out in Australia, where wise energy planning at the federal level appears to be an alien concept.


 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 


 

Advertisement

 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

LinkedIn

Facebook

Read More

Source: cleantechnica.com

Continue Reading

Trending

OMNT.com