Connect with us

Power

Denver Basic Income Project Started With Tesla [TSLA] Gains

Published

on

By Mark Patrick Donovan

The Denver Basic Income Project is the first major effort in the US to study the impact of providing guaranteed income to individuals who are unhoused, as a means of accelerating the path toward stability. I founded and seeded this initiative with $500,000 in Tesla gains. We have already raised an additional $3.3M on top of this to provide unconditional basic income to our unhoused neighbors in Denver, accompanied by a rigorous RCT (Randomized Control Trial) run by DU’s Center for Housing and Homelessness Research. We don’t have to wait for the government to come in and fix things, as Tesla has shown in the automotive industry. We just need to offer better solutions. Direct cash is increasingly seen as one of the most effective ways to fight poverty and economic inequality. We are hoping to take our program to 20 more cities in 2022 and 200 in 2023. We will need the help of the Tesla community and other high-net-worth individuals to make this happen. I have learned many things from Elon, and one of the most inspiring is that huge, unimaginable positive change is possible at a pace that most believe is impossible. Let’s not accept the status quo when it comes to poverty, homelessness, and economic injustice. The Tesla community can be leaders in this space as well, if we so choose.

By 2016, I believed that no other company in the world was doing more to advance the transition to clean energy and transportation than Tesla. The 2016 article “The Tesla Way vs. The Toyota Way” that I co-authored with Jim Womack shows where my thinking was at that time. I have tried to watch every publicly posted statement and presentation that Elon Musk has made in the last ten years, I listen to the quarterly earnings updates, and I read CleanTechnica articles daily. From 2016–2019, I sold off most of my other stock investments and put all of that money into Tesla. I decided that if Tesla fails, I will fail with it.

Fast forward to June 2020. The world is in the throes of Covid — people are losing their jobs, their sources of income, and their homes. And Tesla has already doubled in valuation. By January 2021, Tesla’s market cap had grown by over $620 billion (January 3, 2020 the share price closed at $88.60, and on January 8, 2021 the price closed at $880.02). My personal net worth grew at this same pace. I decided to take 5–10% of those gains to try and leverage them for social good.

I was already familiar with the powerful efficacy of guaranteed income. However, I started to do a deeper dive into the literature and found astounding results like those of the New Leaf Project in Vancouver and the Stockton Economic Empowerment Demonstration. Our current social safety net is not only highly inefficient and ineffective, it is also demeaning and disrespectful to those it seeks to serve. The number of people who are unhoused is growing despite the enormous amount of resources dedicated to this challenge. The concept of basic income appealed to me, as it acknowledges the fundamental injustice and inequalities built into our economic systems while also making a powerful statement of trust and respect to individuals it serves. It is a direct investment in people that has the power to not only alleviate enormous human suffering but also unleash massive amounts of latent potential. It also has the potential to be an enormous stimulus to the economy.

In mid-2020, I started giving out $1,000 monthly grants directly to individuals who had been impacted by Covid. In January of 2021, the Denver Basic Income Project (DBIP) started to organize a formal guaranteed basic income pilot for unhoused individuals in Denver, accompanied by the RCT (the gold standard of research), to evaluate the impact. DBIP will be accepting applications from 2000 potential recipients through 15 partner organizations who will be the point of contact through the program and provide additional wrap-around support where needed. From this potential group, 820 of the applicants will then be randomly assigned to one of three groups. Group A will receive $6,500 up front and then $500/month for 11 months. Group B will receive $1,000/month for 12 months. Group C will be a comparison group and will receive $50/month for completing surveys and allowing us to see the impact of the basic income.

The Denver Basic Income Project is in the “soft launch” right now, testing and improving the program design as it prepares to move to the full launch in Q1 of 2022. We have raised over $3.8M of the $7.4M needed to run the program at full scale. We believe that at the end of this first phase, we will have learned a tremendous amount about how to deliver this cash to unhoused individuals in even more targeted and effective ways. 20 additional cities by 2022 and 200 more by 2023 will have a direct impact on over 100,000 individuals while also providing the learnings and direction to potentially scale the program and significantly reduce homelessness while increasing economic justice in a meaningful way.

I suspect that many of you reading this article may be Tesla shareholders. As you probably know, in the last month, Tesla’s market cap grew by close to $400 billion. I challenge you to take a small part of the gains you have received and deploy them with the goal of creating positive change. Do what resonates with you. If this project compels you, donate to the Denver Basic Income Project and help us close out our phase one fundraising. If you are feeling more bold, launch a similar initiative in your city. We’ll give you our playbook. Reach out to me directly and let’s start this conversation. 

While we run these learning pilots, we can also start to apply first principles to affordable living. The emergence of low-cost clean decentralized energy, local food production (traditional, vertical, indoor/outdoor, technology supported), shared low-cost clean transportation, and modular automated manufactured homes (perhaps mobile) allow for innovation like never before. I believe we can reduce the cost of living by at least 75 percent while improving the quality of living and health dramatically. Thank you, Elon and everyone on your team, for inspiring me to dream big and act now with urgency.

Image: Mark Patrick Donovan, Founder of the Denver Basic Income Project

Mark Donovan is a Denver based entrepreneur and philanthropist. He received a B.A. in Economics from Harvard and is a graduate of the National Outdoor Leadership School. In 1992 Mark co-founded Wooden Ships Knits, a Bali based women’s sweater brand. He has studied, practiced and taught the principles of Lean (The Toyota Production System). In 2020 he founded the Denver Basic Income Project to advance the use of cash assistance to combat income inequality.  Mark is the father of three boys, an avid skier and outdoorsman who also loves to play the piano and guitar. He is committed to fighting all forms of injustice and protecting our planet for future generations.


 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 


 

Advertisement

 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

LinkedIn

Facebook

Read More

Original Post: cleantechnica.com

Power

Electric Car FAQs: Do EVs All Use the Same Plug?

Published

on

Electric cars are mostly like regular cars. You step on the pedal on the right and the car goes, you turn the wheel and the car turns, and the only real difference is what kind of fuel goes in it. We say stuff like that all the time. If we’re being completely honest, though, that’s only mostly true. 99% of the time the only difference is what kind of fuel goes into the car, but that last 1% probably needs explaining.

To provide that explanation, we’ve launched a new segment called “Electric Car FAQs” that hopes to answer those oddball questions that come up 1% of the time. Today’s question: do EVs all use the same plug?

EV FAQs: Do EVs All Use the Same Plug?

Even if you don’t know anything about how electric cars work, you could probably guess that they run on some kind of battery. You’d be right! That battery acts like a gas tank in a conventional car, storing “electric fuel” in reserve until it’s needed. You even fill it up like a gas tank — the main difference is you’re plugging the car into an EV charging station, not a gas pump. Sounds easy, right?

The good news is that it is easy to plug in your EV! But one thing that many people don’t realize is that there are different types of electric car plugs, and different types of chargers. Each one has different capabilities, costs, and charging speeds, and that’s where some confusion can sneak into the conversation.

As ever, we’re here to clear things up for you — starting with the chargers.

EV Charging Levels

Image courtesy of GM.

Level 1 is basically a standard 3-prong outlet, like the kind you have your phone charger plugged into. These work the same way, providing a slow trickle of energy to your electric car battery to basically replace a few miles of driving. You’ll usually get 2-4 miles of range per hour of charging, and it usually won’t increase your monthly electric bill by a noticeable amount, making level 1 home charging an extremely cost-effective charging solution.

Level 2 charging stations use 208 or 240 volts of electricity — more like the big plug your clothes dryer is plugged into. These are to charge your vehicle up to 10 times faster than a level 1 station. If you drive more than a few miles per day and want the convenience of knowing you’re starting each day with “a full tank” from charging at home, installing a level 2 charger in your garage is the way to go, and you can expect to get up to 200 miles of range from an 8 hour, overnight charge.

Because level 2 power is usually available in most commercial locations, many businesses that want to incorporate EV charging stations into their parking lot deploy level 2 charging stations. Whether you’re putting a level 2 one in at your home or at your business, be sure to check with your local utility for rebates and incentives to help keep costs down.

Level 3 DC Fast-Charging

DC fast-charging plugs are typically considered “level 3” and have significantly faster charging speeds than the level 1 or level 2 “AC” chargers. With enough juice, a DC fast charger can charge an electric car battery to 80% from almost empty in about 20 minutes (depending on the vehicle) … but this is a good time to tell you that not all “level 3” charging is created equal.

“Level 3” is a generic term that used to be quite clear. As technology has advanced, though, it’s a term that has led to more confusion that anything else, because it could mean anything from around 25kW of power to more than 300kW (!?).

That’s why some electric car owner apps like Chargeway have “split” Level 3 charging into levels — 3, 4, 5, 6, and 7 — to highlight that difference. At a local (well, local to Chicago, anyway) “level 3” station in Chargeway, it would take about three and a half hours to go from 10% to a 90% charge in a car like the 2021 Ford Mustang Mach E

Screencap from Chargeway app.

… at another local charger, a “level 6” to use Chargeway’s naming system — the time drops significantly. You can get the exact same charge in under 40 minutes (below), instead of (quick math) 2015 minutes. That’s a lunch stop or a grocery run, and knowing ahead of time what to expect when you get to a fast charger is going to make a big difference in your experience.

Screencap from Chargeway app.

The National Auto Dealers’ Association recently partnered with Chargeway to help train electric car dealers to use this more intuitive “level 1–7” power system as they talk about EV chargers … but they also want to use Chargeway to help simplify the conversion about plugs, which we’ll get to next.

Different Types of EV Plugs

CHAdeMO was the first type of DC fast-charging system on the market, and helped early e-mobility adopters reduce range anxiety. Cars with CHAdeMO plugs can fast charge a battery to 80% in about 60 minutes at a rate of roughly 2 miles of range added per minute of charging.

Image by CleanTechnica.

Today, the Nissan LEAF and Mitsubishi Outlander PHEV (shown, above) are the most common CHAdeMO vehicles, but even they are switching to the more common J1772 with their next generation of electric cars. Still, there are hundreds of thousands of used EVs on the market that use this standard, so it’s worth knowing about.

Most “modern” electric vehicles (the notable exceptions being cars built by Tesla) use the J1772, and the J1772 plug can charge your car using 120, 208, or 240 volts of electricity, depending on the type of charger station you’re using. These are those “level 1” and “level 2” we talked about earlier, and it’s the most common type of charging you’ll find.

For fast charging, those same cars use the SAE Standard Combined Charging System, or CCS. Developed by the society of automotive engineers (SAE, natch), this is the most widely used fast charging standard globally, and works with most fast chargers — just not, currently, the Tesla Supercharger Network, will.

Tesla cars on the Tesla Supercharger network use proprietary standards that, while also called “level 3” by most networks, typically fall into the “level 6” or “level 7” range offered by Chargeway. Tesla drivers have exclusive access to the national network of Tesla Superchargers to charge their vehicles, but they have to use an adapter to charge at other DC fast-charging stations that use CCS or CHAdeMO plugs and at Level 1 and Level 2 charging stations.

Tesla Supercharger in Florida, by Zach Shahan/CleanTechnica.

Colors & Numbers

We already talked about the way that a charging app displays information can have a huge impact on your expected wait times while you’re charging. Chargeway also simplifies the process of finding charging stations that work for your car. Instead of showing a “generic” charging map that shows all the chargers in your neighborhood, Chargeway only shows you the stations that will work for your specific car, reducing anxiety and making it easier to “fill up faster” with electric fuel.

Blue for CHAdeMO, green for J1772/CCS, and red for Tesla.

Image courtesy of Chargeway.

Higher numbers equal faster charging, so if you have a Chevy Bolt, that’s a Green 4. A Mustang Mach-E? That’s a Green, too, but it will go up to level 6. A brand-new Tesla Model S? Red 7.

It’s intuitive, and it’s the language that many dealers will soon be using. “Because the 16,000+ NADA member dealers represent nearly all the major automotive brands, their adoption of Chargeway will create a de facto ‘standard dictionary’ of EV charging terms,” reads the official NADA press release. “‘Green’ plugs, ‘Level 6’ chargers, etc. That will make it easier for EV dealers and buyers to communicate, regardless of brand.”

With all that said, we hope we’ve made it clearer for you to understand the different types of EV charging and chargers. If you want to hear about more clever ways to visualize or talk about EVs, you can tune into Chargeway’s founder, Matt Teske, on the Electrify Expo podcast with CleanTechnica’s Jo Borras (me!) on Apple Podcasts, Spotify, or anywhere you get your podcasts.

Original content from CleanTechnica.


 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 


 

Advertisement

 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

LinkedIn

Facebook

Read More

Source: cleantechnica.com

Continue Reading

Power

Diess Survives Volkswagen Board Review — for Now

Published

on

Herbert Diess, CEO of the Volkswagen Group, was put under the microscope recently after he suggested publicly that as many as 30,000 manufacturing jobs at the company could be lost if it fails to meet the challenge from competitors, principally Tesla. His remarks were interpreted by some, especially Daniela Cavallo, the head of the works council, as a threat to fire 30,000 employees.

Diess further inflamed the passions of company insiders when he invited Elon Musk to call in to a meeting of 200 Volkswagen senior managers. That annoyed just about everyone in the company who wasn’t already annoyed by the job cuts thing and resulted in a call to convene the rarely use mediation committee of the Volkswagen management board. That committee is made up of representatives from the company’s largest shareholders as well as the head of the works council (worker union).

A meeting was held last Tuesday but no announcements were made afterwards. The only things Reuters could uncover about the meeting were two statements from anonymous sources. The first said, “This topic is so hot, it is on a knife edge. I can’t say anything further.” The other said, “As expected, there is nothing new.” The most that can be gleaned from this kerfuffle is that Diess has been called on the carpet and warned that he must change his management style or face possible termination.

Changing his management style appears to mean he should stop pissing off the works council. Cavallo is on record as saying, “We’re tired of hearing time and again that the works council is apparently only concerned with preserving the status quo.” She insists that all the workers and labor representatives are fully supportive of the proposals Diess has put forth to speed up the transition to electric vehicles, including a major rethink of how they build cars at its largest factory, in Wolfsburg.

The crux of Diess’ recent remarks is that Tesla will soon be building electric cars in Grünheide in much less time with fewer workers. Stripping away all the emotional content of his recent remarks, it should be intuitively obvious to the most casual observer that you can’t compete successfully if your cars cost more to build than the cars your competitor is making. It’s as plain as the face on your nose, and yet Diess has been called to account for saying out loud what should be evident to everyone.

Sources tell Reuters that the committee is working to craft a position that will satisfy all parties — which means it will probably satisfy no one. Diess will be asked to change his management style, which is a little like asking a leopard to change its spots, while new board members will be announced, new assurances on job prospects for employees will be given, and new investment plans for Volkswagen Group will be put forth.

There are rumors — unfounded, unconfirmed, and uncorroborated — that if Diess is tossed overboard, he could wind up being tapped to run the automotive division of Tesla, which would allow Musk to focus his considerable talents on other things like SpaceX, energy storage, and tangling with Bernie Sanders on Twitter.

Part of Diess’ problems may stem from the fact that he is an outsider. From 1996 to 2015, he worked at BMW, where he was a member of its management board. Volkswagen, like any major corporation, has a culture of promoting from within. No doubt, bringing Diess in from outside the company — and from a competitor in the German auto industry at that — rankled lots of loyal Volkswagen managers who maybe thought they should have been promoted when the diesel cheating scandal hit in 2015 and Martin Winterkorn was given the heave ho.

Sometimes it’s not what you say, it’s how you say it. Has Diess learned his lesson? “We’ll see,” said the Zen master.


 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 


 

Advertisement

 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

LinkedIn

Facebook

Read More

Article: cleantechnica.com

Continue Reading

Power

Hydro Versus Batteries: Tasmania Pushes Its Undersea Cable Plan

Published

on

There is no question that hydroelectric power is a wonderful thing. It’s green, it’s renewable, it’s emissions-free, and it’s relatively inexpensive.  There is also no question that water can be stored behind a dam for days, weeks, months, or even years before it is used to spin turbines that generate electricity.

Tasmania has an abundance of hydroelectric power — quite a bit more than it needs, actually. It would very much like to sell some of its excess electricity to the rest of Australia. The plan put forward by Hydro Tasmania and TasNetworks is known as the Marinus Link — a 500-kilometer-long undersea transmission line linking Tasmania to Melbourne. From there it would connect to the utility grid on the mainland, making Tasmania Australia’s national battery, so to speak.

But there’s a flaw in the Hydro Tasmania plan. According to a report written by the highly regarded Dr. Bruce Mountain for the Victoria Energy Policy Center, the Marinus Link is a money-losing proposition that will only make less economic sense in coming years as the cost of grid scale battery storage continues to decline. Here’s a quote from the Executive Summary that pretty much says it all.

“The main conclusions of that report are that 1,500 MW of four-hour battery can be provided for less than half the cost of Marinus Link; that the same capacity of six-hour battery can be provided for 79% of the cost of Marinus Link and that 1,500 MW of eight-hour battery storage is still cheaper than Marinus Link.

“In other words, even if Hydro Tasmania is able to provide, for no additional cost, 1,500 MW that it could export to Victoria day-in day-out for eight hours at a stretch for the foreseeable future, it will still be cheaper to build 1,500 MW of batteries in Victoria rather than to build Marinus Link. Of course the Tasmanian electrical system has no-where near the power or energy capability needed to provide 1,500 MW of supply to Victoria for 8 hours every day and so many billions will be needed to expand its storages and energy production in Tasmania in order to be able to provide the capacity that Marinus Link claims to offer.”

The ending of the report is just as brutal. “We now feel able to conclude that not only does Marinus Link have no chance of competing with battery alternatives but that if Hydro Tasmania develops pumped hydro capacity in Tasmania it is very likely that, like Snowy 2.0, it will be stranded from the outset.”

Cuanto Cuesta?

So how much would the Marinus Link cost? The proposal calls for building two new 750-megawatt undersea power cables between Tasmania and Victoria at a cost of about $3.5 billion. Hydro Tasmania, which is owned by the state of Tasmania, plans to store power in Tasmanian dams by releasing water to generate electricity for export to Victoria when prices are high, and pumping the water back into dams when power prices are low.

According to MSN, Mountain claims that if the Marinus Link is funded by the Tasmanian or Commonwealth governments, taxpayers will be left paying for an asset that would cost more to build than it can earn. “It would be placing a dead weight on the shoulders of the people of Tasmania, if indeed the people of Tasmania bear most of the cost. If it’s borne by the Commonwealth in some way, it’ll be placing a burden on all taxpayers and energy consumers depending on how the bid ends up, when you build an asset that can’t compete.”

Mountain also expressed skepticism about the the long term benefits of construction jobs associated with the projects. “It would be much better for the community if the government simply gave that money out — frankly, it would be less of a loss for the community. Building a white elephant, a dead weight loss, entrenches disadvantage.” No namby-pamby, wishy-washy words from the esteemed Dr. Mountain. Better to take that money and just throw it in the street.

The Case For Marinus Link

Hydro Tasmania and TasNetworks aren’t giving up the fight. TasNetworks general manager for Marinus Link Bess Clark says both batteries and pumped hydro storage will be needed as Australia’s energy market transitions away from fossil fuels. “Marinus Link presents a once in a generation opportunity to double Tasmania’s clean energy, helps combat climate change, puts downward pressure on power prices and creates thousands of local jobs,” she says, before adding that modeling by the Australian Energy Market Operator shows the Marinus Link will be a key part of Australia’s energy grid in the future.

A spokesman for Hydro Tasmania said batteries wouldn’t be able to meet all of Australia’s energy storage requirements and that deep storage like pumped hydro will be needed. “It’s not a question of having one or the other. We will need all the relevant, cost competitive technologies to play their part to ensure all Australians have a power system that is reliable, secure and affordable,” he said.

Last week the Tasmanian Chamber of Commerce and Industry threw its “wholehearted support” behind the Marinus Link project. “We know that this project will be fantastic not just for employment across the state over the next 50 years but also for the growth of business within Tasmania,” TCCI CEO Michael Bailey said.

All Of The Above

There are two sides to this debate and they both have points in their favor. Pumped hydro can supply power far longer than any grid storage battery in existence. A battery can react in milliseconds; pumped hydro cannot. One of the benefits of battery storage is its frequency and voltage regulation capability. Both save grid operators money but are services pumped hydro cannot provide.

Then there is the question of timing. Bruce Mountain tells the Sydney Morning Herald the Victorian Big Battery, composed of dozens of Tesla Megapacks, will be commissioned shortly, while a similar installation at Jeeralan should be ready by 2026. There are four more storage battery projects in the pipeline as well. A further four major batteries are likely to proceed. Those will all be in place and operational before the Marinus Link becomes operational.

“Battery storage capacity will be built and operational in Victoria long before Marinus Link and the Battery of the Nation developments in Tasmania are close to operational,” the VEPC report says. “Marinus Link continues to have no prospect of competing against battery alternatives in Victoria.” Mountain adds, “Considering the much higher efficiency and responsiveness of chemical batteries than pumped hydro, if pumped hydro is developed in Tasmania it is surely likely that it, not batteries, will sit idle.”

“It’s not a question of having one or the other,” Hydro Tasmania counters. “We will need all the relevant, cost-competitive technologies to play their part to ensure all Australians have a power system that is reliable, secure and affordable.” Tasmania also is investing heavily in the power of wind, something it also has in abundance.

The Trouble With Transmission

Solar power advocates like to say that a gigantic solar farm in a small corner of the Sahara desert could power all of Europe and the UK — if there were transmission lines connecting the two areas. In the US, some people dream of New Yorkers getting solar power from California after the sun sets on the Big Apple. That could happen if there were transcontinental high voltage transmission lines.

That being said, transmission lines can be hugely expensive to construct and maintain. They are also subject to disruption from any number of causes — wind, earthquakes, wild fires, even malicious damage. The world is learning a hard lesson about making stuff in one place for consumption in another place using a flotilla of cargo ships to connect the two. Anything that can go wrong often does go wrong and at the worst possible time. Just ask Puerto Rico about relying on distant generating stations to power its major cities.

Pumped hydro is an important piece of the energy storage puzzle but it can’t just be plunked down close to the places where demand for electrical energy is high. In theory, battery storage facilities can be sited almost anywhere. Ideally, they can go where retired thermal generating stations are located, places with the advantage of already having the connections needed to feed the stored power into the electrical grid.

Planning For The Future Is Hard

The objection is not to Tasmania’s abundant hydro power. The objection is the cost of getting it to distant markets at competitive cost. Then there a time considerations. What may seem like a good idea today may not look quite so appealing a few years down the road when the economics tilt more in favor of one solution than another. When there is not an unlimited supply of money, it is best to invest what you have in solutions that will be fiscally viable for the longest period of time, not one that will be come economically noncompetitive before the end of its useful life.

Perhaps Tasmania would be wise to invest its dollars in technologies that turn its excess electricity into green hydrogen or ammonia, which could then be exported at reasonable cost to anywhere in the world. The issue is not energy storage. The issue is energy transmission. It will be interesting to see how this plays out in Australia, where wise energy planning at the federal level appears to be an alien concept.


 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 


 

Advertisement

 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

LinkedIn

Facebook

Read More

Source: cleantechnica.com

Continue Reading

Trending

OMNT.com