Connect with us

Power

Electric Car FAQs: Do EVs All Use the Same Plug?

Avatar

Published

on

Electric cars are mostly like regular cars. You step on the pedal on the right and the car goes, you turn the wheel and the car turns, and the only real difference is what kind of fuel goes in it. We say stuff like that all the time. If we’re being completely honest, though, that’s only mostly true. 99% of the time the only difference is what kind of fuel goes into the car, but that last 1% probably needs explaining.

To provide that explanation, we’ve launched a new segment called “Electric Car FAQs” that hopes to answer those oddball questions that come up 1% of the time. Today’s question: do EVs all use the same plug?

EV FAQs: Do EVs All Use the Same Plug?

Even if you don’t know anything about how electric cars work, you could probably guess that they run on some kind of battery. You’d be right! That battery acts like a gas tank in a conventional car, storing “electric fuel” in reserve until it’s needed. You even fill it up like a gas tank — the main difference is you’re plugging the car into an EV charging station, not a gas pump. Sounds easy, right?

The good news is that it is easy to plug in your EV! But one thing that many people don’t realize is that there are different types of electric car plugs, and different types of chargers. Each one has different capabilities, costs, and charging speeds, and that’s where some confusion can sneak into the conversation.

As ever, we’re here to clear things up for you — starting with the chargers.

EV Charging Levels

Image courtesy of GM.

Level 1 is basically a standard 3-prong outlet, like the kind you have your phone charger plugged into. These work the same way, providing a slow trickle of energy to your electric car battery to basically replace a few miles of driving. You’ll usually get 2-4 miles of range per hour of charging, and it usually won’t increase your monthly electric bill by a noticeable amount, making level 1 home charging an extremely cost-effective charging solution.

Level 2 charging stations use 208 or 240 volts of electricity — more like the big plug your clothes dryer is plugged into. These are to charge your vehicle up to 10 times faster than a level 1 station. If you drive more than a few miles per day and want the convenience of knowing you’re starting each day with “a full tank” from charging at home, installing a level 2 charger in your garage is the way to go, and you can expect to get up to 200 miles of range from an 8 hour, overnight charge.

Because level 2 power is usually available in most commercial locations, many businesses that want to incorporate EV charging stations into their parking lot deploy level 2 charging stations. Whether you’re putting a level 2 one in at your home or at your business, be sure to check with your local utility for rebates and incentives to help keep costs down.

Level 3 DC Fast-Charging

DC fast-charging plugs are typically considered “level 3” and have significantly faster charging speeds than the level 1 or level 2 “AC” chargers. With enough juice, a DC fast charger can charge an electric car battery to 80% from almost empty in about 20 minutes (depending on the vehicle) … but this is a good time to tell you that not all “level 3” charging is created equal.

“Level 3” is a generic term that used to be quite clear. As technology has advanced, though, it’s a term that has led to more confusion that anything else, because it could mean anything from around 25kW of power to more than 300kW (!?).

That’s why some electric car owner apps like Chargeway have “split” Level 3 charging into levels — 3, 4, 5, 6, and 7 — to highlight that difference. At a local (well, local to Chicago, anyway) “level 3” station in Chargeway, it would take about three and a half hours to go from 10% to a 90% charge in a car like the 2021 Ford Mustang Mach E

Screencap from Chargeway app.

… at another local charger, a “level 6” to use Chargeway’s naming system — the time drops significantly. You can get the exact same charge in under 40 minutes (below), instead of (quick math) 2015 minutes. That’s a lunch stop or a grocery run, and knowing ahead of time what to expect when you get to a fast charger is going to make a big difference in your experience.

Screencap from Chargeway app.

The National Auto Dealers’ Association recently partnered with Chargeway to help train electric car dealers to use this more intuitive “level 1–7” power system as they talk about EV chargers … but they also want to use Chargeway to help simplify the conversion about plugs, which we’ll get to next.

Different Types of EV Plugs

CHAdeMO was the first type of DC fast-charging system on the market, and helped early e-mobility adopters reduce range anxiety. Cars with CHAdeMO plugs can fast charge a battery to 80% in about 60 minutes at a rate of roughly 2 miles of range added per minute of charging.

Image by CleanTechnica.

Today, the Nissan LEAF and Mitsubishi Outlander PHEV (shown, above) are the most common CHAdeMO vehicles, but even they are switching to the more common J1772 with their next generation of electric cars. Still, there are hundreds of thousands of used EVs on the market that use this standard, so it’s worth knowing about.

Most “modern” electric vehicles (the notable exceptions being cars built by Tesla) use the J1772, and the J1772 plug can charge your car using 120, 208, or 240 volts of electricity, depending on the type of charger station you’re using. These are those “level 1” and “level 2” we talked about earlier, and it’s the most common type of charging you’ll find.

For fast charging, those same cars use the SAE Standard Combined Charging System, or CCS. Developed by the society of automotive engineers (SAE, natch), this is the most widely used fast charging standard globally, and works with most fast chargers — just not, currently, the Tesla Supercharger Network, will.

Tesla cars on the Tesla Supercharger network use proprietary standards that, while also called “level 3” by most networks, typically fall into the “level 6” or “level 7” range offered by Chargeway. Tesla drivers have exclusive access to the national network of Tesla Superchargers to charge their vehicles, but they have to use an adapter to charge at other DC fast-charging stations that use CCS or CHAdeMO plugs and at Level 1 and Level 2 charging stations.

Tesla Supercharger in Florida, by Zach Shahan/CleanTechnica.

Colors & Numbers

We already talked about the way that a charging app displays information can have a huge impact on your expected wait times while you’re charging. Chargeway also simplifies the process of finding charging stations that work for your car. Instead of showing a “generic” charging map that shows all the chargers in your neighborhood, Chargeway only shows you the stations that will work for your specific car, reducing anxiety and making it easier to “fill up faster” with electric fuel.

Blue for CHAdeMO, green for J1772/CCS, and red for Tesla.

Image courtesy of Chargeway.

Higher numbers equal faster charging, so if you have a Chevy Bolt, that’s a Green 4. A Mustang Mach-E? That’s a Green, too, but it will go up to level 6. A brand-new Tesla Model S? Red 7.

It’s intuitive, and it’s the language that many dealers will soon be using. “Because the 16,000+ NADA member dealers represent nearly all the major automotive brands, their adoption of Chargeway will create a de facto ‘standard dictionary’ of EV charging terms,” reads the official NADA press release. “‘Green’ plugs, ‘Level 6’ chargers, etc. That will make it easier for EV dealers and buyers to communicate, regardless of brand.”

With all that said, we hope we’ve made it clearer for you to understand the different types of EV charging and chargers. If you want to hear about more clever ways to visualize or talk about EVs, you can tune into Chargeway’s founder, Matt Teske, on the Electrify Expo podcast with CleanTechnica’s Jo Borras (me!) on Apple Podcasts, Spotify, or anywhere you get your podcasts.

Original content from CleanTechnica.


 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 


 

Advertisement

 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

LinkedIn

Facebook

Read More

Source: cleantechnica.com

Power

Tesla’s Policy Lead Testifies at PUCT Open Meeting As Tesla Focuses on Supporting the Texas Grid

Avatar

Published

on

Tesla’s US Energy Markets Policy Lead, Arushi Sharma Frank, was recently asked to testify at a Public Utility Commission of Texas Open Meeting. A photo of Frank wearing an LFDECARB tee shirt popped up on Twitter. The tee shirt itself is a message focused on decarbonization by the group Bros for Decarbonization. You can learn more about the group here.

Frank confirmed that it was an impromptu request to testify. She also shared exactly what she talked about.

The document Frank shared was a filing receipt for supplemental comments from Tesla signed by Frank. There’s also a video of her testimony which you can watch here. In the document, Tesla said that it appreciated the opportunity to share its comments regarding PUCT’s discussions that were held on June 16, 2022 — the open meeting regarding Tesla’s proposal OBDRR041 as well as its prior work demonstrating how virtual power plants (VPPs) work.

I recently published an article about Tesla’s VPP workshop, which was related to OBDRR041. Tesla also said that it appreciated the Commission’s comments related to its Distributed Energy Resource (DER) pilot projects. Tesla especially supported the conversation between Commission representatives and the staff at the Electric Reliability Council of Texas (ERCOT), as well as with the market participants. The conversation covered the real implementation of the system through a pilot as opposed to a task force approach. The latter, Frank noted, could unnecessarily create delays in implementing a grid service solution for DERs.

Looking At The Document & Tesla’s Statements

The Commission’s decision to encourage ERCOT to get stakeholders together and develop a pilot project allowing the market solution of exports from VPPs to be tested is also something Tesla expressed its appreciation for. This allowed for addressing issues raised by utilities and other market participants that have concerns about the potential impacts of site-exporting DERs on distribution facilities. It also allowed for a discussion of the net impact and benefits to the transmission grid.

Tesla also clarified and provided information as a response to a few discussion topics and questions that were raised at the open meeting. These topics included the OBDRR041 status, the ERCOT Pilot Proposal, and a question posed to Tesla by Chairman Lake at the open meeting.

OBDRR041 status

Tesla noted that since the OBDRR041 is currently tabled at the ERCOT Technical Advisory Committee, it would not seek a vote until there was further development of issues and positions from ERCOT and the potential members of the committee.

“At this time, Tesla believes that OBDRR041 may remain tabled at the Technical Advisory Committee pending consideration of the feasibility of a Virtual Power Plant pilot as the Commission proposed at the Open Meeting.”

ERCOT Pilot Proposal

Tesla expressed its views on the formal ERCOT Pilot Proposal that was introduced at the Open Meeting. Tesla noted that for a formal ERCOT pilot approach to be a feasible alternative to OBDRR041, a pilot should :

Have ERCOT’s support and the market’s acceptance and approval from ERCOT’s governing board.
Be amenable to commercialization in that sufficient participants could be aggregated across sufficient distribution service areas (more than one, but in capped quantities, in each service area as described in a proposed pilot framework).
Adequately capture data addressing clearly identified distribution utility concerns, in parallel to or as part of the pilot’s scope.
Have provisions to ensure market services compensation commensurate with grid services provided by pilot participants
Have an identified “start date” and “end date” which are technically feasible for involved parties.

In addition to that last point, Tesla added that the following are requirements in Section 25.361 (k) regarding pilot development and approval:

“ERCOT may conduct a pilot project upon approval of the scope and purposes of the pilot project by the governing board of ERCOT. Proposals for approval of pilot projects shall be made to the governing board only by ERCOT staff, after consultation with affected market participants and commission staff designated by the executive director.

“The ERCOT governing board shall ensure that there is an opportunity for adequate stakeholder review and comment on any proposed pilot project.”

Tesla noted that pilot  project proposals approved by the ERCOT governing board should include the following:

The scope and purposes of the pilot project;
The designation of temporary exceptions from ERCOT rules that ERCOT expects to authorize as part of the pilot project;
Criteria and reporting mechanisms to determine whether and when ERCOT should propose changes to ERCOT rules based on the results of a pilot project.
An estimate of costs ERCOT will incur attributable to the pilot project.
An estimated date of completion of the pilot project.

Tesla’s Response To Chairman Lake

Tesla expressed its appreciation for Chairman Lake, who stated that “nothing teaches like experience, so the sooner you get something in the field, the more you learn faster.”

Tesla also responded to a question posed by the chairman and said that it’s concerned that it will not be able to scope a pilot program in a Non-Opt-in-Entity (NOIE) area. Currently, Texas homeowners are unable to participate in VPPs due to the law. Tesla said:

“Primarily, this approach may not be economically rational as it could mean a substantial resource investment in a pilot that is not scalable to a commercial retail offer where Tesla could continue to directly serve those customers and grow the program’s strength and viability.

“The customers in a pilot should be able to continue to benefit from the value for their systems beyond the end-date of the pilot, in a commercially viable solution – but with a NOIE-only pilot, Tesla would have no control, legally or otherwise, over the continued participation of such customers once the pilot closes, even if a viable market participation framework is implemented following that pilot’ s conclusion.

“Any formal program participation of those customers would be solely at the option of the NOIE serving those customers. More simply, the purpose of a pilot is to study a solution that can be scaled following adoption of market rules based on pilot learnings. To build a program off the learnings of a pilot, the customer base involved in the pilot should be able to continue service under that formalized program, so that parties involved are not running the risk of raising a wholly new set of unstudied issues in a new distribution system type that was not part of the pilot.”

Frank also shared a link to over 60 pages of data from Tesla. Deep dive coming soon.

Appreciate CleanTechnica’s originality and cleantech news coverage? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Advertisement

 

LinkedIn

Facebook

Read More

Original Source: cleantechnica.com

Continue Reading

Power

Coalition Calls for EU Hydrogen Quota for Shipping

Avatar

Published

on

Energy providers, shipping companies and NGOs call on the EU to introduce a minimum quota of 6% sustainable and scalable hydrogen fuels by 2030

A broad coalition of energy providers, shipping companies and NGOs — including Siemens Energy, Viking Cruises, Green Power Denmark and Brussels-based organisations Hydrogen Europe and Transport & Environment (T&E) — has called on the EU to introduce a minimum quota of 6% sustainable and scalable hydrogen fuels by 2030.

Last year the European Commission, the EU’s executive body, proposed a shipping fuel law (FuelEU Maritime Regulation) aimed at increasing the uptake of alternative marine fuels. Unfortunately, the law fails to guarantee the competitiveness of sustainable and scalable e-fuels, and risks promoting cheaper, unsustainable fuels. The coalition therefore calls on the European Parliament and EU Council to improve the proposal by including a dedicated e-fuels sub quota in the proposed regulation.

Delphine Gozillon, sustainable shipping officer at T&E, said:

“An ambitious shipping fuels law will be key to set the shipping sector on course for full decarbonisation. Sustainable e-fuels are currently too expensive compared to other alternatives such as fossil LNG and biofuels, holding back investments in production facilities, refuelling infrastructure in ports and zero-emission ships. However, with a bit of a push e-fuels produced from renewable hydrogen can be scalable. That’s why we need a quota to get the ball rolling and encourage companies to start investing in clean shipping fuels. Shipping does not need to be a dirty industry forever.”

A list of all the coalition’s demands can be found here.

Download the letter.

Courtesy of Transport & Environment.

Featured image courtesy of Maersk.

Appreciate CleanTechnica’s originality and cleantech news coverage? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Advertisement

 

LinkedIn

Facebook

Read More

Source Here: cleantechnica.com

Continue Reading

Power

Diving Into Tesla’s 60+ Pages of PUCT Filings (Mostly Data)

Avatar

Published

on

Tesla has over 60 pages of Public Utility Commission of Texas (PUCT) filings that have recently been shared publicly, and we’re about to dive into them. Grab some water and a coffee and let’s go.

Tesla and its team, including its US Energy Markets Policy Lead, Arushi Sharma Frank, have been working hard to help Texan Powerwall customers be able to take part in virtual power plant (VPP) pilot programs. In May, Tesla held a VPP workshop for the Electric Reliability Council of Texas (ERCOT) and Frank was one of the key leaders hosting the meeting.

Recently, Frank was asked to testify at an open meeting of the PUCT, and there she shared Tesla’s comments and statements addressing questions and other concerns relating to VPPs.

Frank tweeted a thank you to the PUCT for the opportunity of allowing Tesla to provide comments. In addition, she followed up with two more tweets, with one mentioning her favorite part of the filings — Tesla describing a phenomenon called “clumping.” Clumping is a reference to capturing the full value of distributed energy renewables capacity in an aggregate load resource (ALR).

63 Pages Of Data For PUCT

In total, there were 63 pages. I’m only going to go over some of the data briefly. I think it’s important to highlight Tesla’s hard work because if Texas allows its residents who own Powerwall batteries systems to participate in VPPs, this opens the door for other states in the Deep South to at least consider clean energy solutions for various problems, especially grid-related. Texas is well known for its grid instability, and if it allows Tesla Powerwall customers to take part in VPPs, this could mean saving lives during disasters.

Included in the filings were comments from Tesla, a request from Tesla that the Commission direct ERCOT to prioritize several actions such as allowing ALRs (Aggregated Load Resources) to provide injection capacity from individual sites in a framework by December 2022, an informal narrative of Tesla’s VPP demonstration in ERCOT, and 47 slide pages detailing the ERCOT/Tesla ancillary service demonstration.

I think the most important part for us outsiders observing here is the 47 slides, because they highlighted a lot of data that shows just how the Texas grid will benefit from VPPs. The 47 slides showed several key meetings between Tesla and ERCOT about the demo program.

Key Meeting Between Tesla & ERCOT Shows Tesla Has Been Working Hard Trying To Convince Texas To Allow VPPs

In March, there were four meetings in which Tesla defined clumping, Frank’s favorite part, as well as two telemetry signal approaches. Following that were weekly meetings around the demo results with the last demo result being April 15, 2022. On April 9, Tesla and ERCOT revisited clumping and the two telemetry signals approach.

This tells me and anyone paying close attention that Tesla has been quietly working with ERCOT to help the Texas grid for quite some time. This, I think, is a good thing, especially for Texas.

Tesla Seeks To Register The First ALR In ERCOT

According to the documents, Tesla wants to register the first ALR in ERCOT and participate in services that are currently unavailable. These services include non-spin and sCED load reduction dispatch. Tesla wants to do this with the full value of grid services that injecting devices can provide in an ALR.

Tesla said that it will lead efforts to modify the utility’s ALR Policy Other Binding Document to make it fit with practical operational, registration, and qualification issues. It clarified that ERCOT can exchange two telemetry points with an aggregation-qualified scheduling entity (QSE).

Tesla ERCOT Demo Tests

Tesla’s first demo looked at the comparison of battery and premise-level telemetry. Below is a chart showing the initial conditions, test steps, data collected, and pass criteria.

Table courtesy of Tesla

This first test results show that VPPs work beautifully in Texas. According to the results, the load decreased during the evening while in the morning it decreased while exporting to the grid. And during the daytime, the exporting of energy to the grid only increased. Tesla explained further:

“Discharging from the customer’s battery using a step function can clearly be identified in the premise-level data.

“At different times of day, premise-level data will look differently, depending on the current load:

1. Evening time: during the evening peak, user load is typically high, and discharging the battery will show up as a decrease in premise-level load.

2. Morning time: during the night/morning time, user load is typically lower, and discharging the battery will both decrease load, and export energy to the grid.

3. Daytime: during the daytime, solar is exporting to the grid, and discharging the battery will increase the export.”

You can view the full demo, test results, and all of Tesla’s comments here.

Appreciate CleanTechnica’s originality and cleantech news coverage? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Advertisement

 

LinkedIn

Facebook

Read More

Original Article: cleantechnica.com

Continue Reading

Trending

OMNT.com