Connect with us

Power

Large-Scale Carbon Sequestration Research in Europe May Be More Important Than You Think

Avatar

Published

on

In the realm of carbon sequestration in agriculture there are practical approaches like regenerative agriculture, including methods like biochar produced by pyrolysis of biomass in the absence of oxygen and returned to the soil, and overarching ideas like permaculture, which is an ethical framework that is used to design regenerative systems at all scales.

Whatever you call it and however you combine it in theory and implement it in regional practices, scalability is always an issue, and we live in a world dominated by intensive industrial agriculture that will be very hard to turn into a net zero emission industry, with emissions from production currently accounting for 11% of global greenhouse gas emissions. According to Climate Watch, 24 countries have agriculture as the top source of emissions.

So, what is being done about this? Well, it turns out that there are programs covering large regions that try to establish standards that can eventually turn into unified recommendations and/or legislation across nations. Sounds a bit boring maybe, but it is work like this that is crucial if anything of significant scale is going to be viable.

In the following, Line Carlenius Berggreen from the Danish Centre for Food and Agriculture (DCA) at Aarhus University, Denmark, will introduce us to how carbon sequestration may be effective on a very large scale in a project called TRACE-Soils under the European Joint Programme EJP Soil.

Photo by Jesper Berggreen

Under What Conditions Will Carbon Sequestration Benefit Agroecosystem Services?

By enhancing carbon sequestration in soils, agricultural management practices improve agroecosystem services, such as soil quality and biodiversity. However, soil carbon sequestration comes at a cost of other services. A ranked list of climate-zone indicators will increase the predictability of the magnitude of the trade-offs in agricultural soils.

Most trade-offs have to do with climate regulation. It is still uncertain under which conditions the synergies or trade-offs of carbon sequestration prevail. The EJP SOIL project TRACE-Soils is generating applicable mitigation strategies and indicators.

Across a broad range of climatic and soil conditions, TRACE-Soils addresses the following research areas:

Look at existing knowledge on how management practices shift soil structure and soil biota, and determine the emissions of carbon dioxide (CO2) and nitrous oxide (N2O), as well as the losses in nitrogen (N) and phosphorous (P).
Analyse how trade-offs and synergies link to structural and biological factors in long-term experiments.
Scale-up trade-off analysis to the provincial level in Europe by using modelling scenarios. The results will be used to propose a ranked list of climate-zone specific indicators and measures to assess and mitigate the trade-offs of C sequestration.

Experiments Reveal Effects Of Minimising Soil Disturbance

1000 soil samples are collected across seven long-term agricultural experiments participating in the EJP SOIL consortium. All experiments allow research concerning the effects of minimising soil disturbance including three treatments: conventional, reduced and zero tillage. Also, analysis of the chemical, physical and biological attributes of the soil will be performed.

With the gained knowledge the mechanism underpinning the trade-offs associated to soil carbon sequestration practices in Europe will be identified, and it will contribute to the identification of indicators to assess and mitigate trade-offs.

“The results will help raising awareness of the relevance of agricultural practices that increase soil carbon while minimizing trade-offs, and the results will provide clear and applicable mitigation strategies and indicators”, says Marta Goberna, coordinator of TRACE-Soils, National Institute for Agricultural and Food Research and Technology (INIA) Madrid, Spain.

Finally, the highly collaborative approach implemented in TRACE-Soils enforce the establishment of a strong networks based on the common interest of developing knowledge and tools to foster climate-smart sustainable agricultural soil management.

TRACE-Soils Goal

To identify the mechanisms underpinning trade-offs and synergies of soil carbon sequestration, greenhouse gas emissions and nutrient losses in agricultural soils across Europe, and propose climate-zone specific indicators and measures to mitigate trade-offs.

TRACE-Soils will identify soil abiotic and biotic predictors of trade-off magnitudes, and test them in long-term experiments across a NE-SW pedoclimatic gradient (the microclimate within soil that integrates the combined effects of its temperature, water content and air mixture) in Europe. Modelling scenarios will be posed to scale-up trade-off analysis to the provincial level.

Outputs of reviews, experiments and models will serve to propose a ranked list of climate-zone specific indicators and measures to assess and mitigate trade-offs.

Image courtesy of EJP Soils

Watch video interviews in the original article.

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.

Advertisement

 

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Read More

Source: cleantechnica.com

Power

Tesla’s Policy Lead Testifies at PUCT Open Meeting As Tesla Focuses on Supporting the Texas Grid

Avatar

Published

on

Tesla’s US Energy Markets Policy Lead, Arushi Sharma Frank, was recently asked to testify at a Public Utility Commission of Texas Open Meeting. A photo of Frank wearing an LFDECARB tee shirt popped up on Twitter. The tee shirt itself is a message focused on decarbonization by the group Bros for Decarbonization. You can learn more about the group here.

Frank confirmed that it was an impromptu request to testify. She also shared exactly what she talked about.

The document Frank shared was a filing receipt for supplemental comments from Tesla signed by Frank. There’s also a video of her testimony which you can watch here. In the document, Tesla said that it appreciated the opportunity to share its comments regarding PUCT’s discussions that were held on June 16, 2022 — the open meeting regarding Tesla’s proposal OBDRR041 as well as its prior work demonstrating how virtual power plants (VPPs) work.

I recently published an article about Tesla’s VPP workshop, which was related to OBDRR041. Tesla also said that it appreciated the Commission’s comments related to its Distributed Energy Resource (DER) pilot projects. Tesla especially supported the conversation between Commission representatives and the staff at the Electric Reliability Council of Texas (ERCOT), as well as with the market participants. The conversation covered the real implementation of the system through a pilot as opposed to a task force approach. The latter, Frank noted, could unnecessarily create delays in implementing a grid service solution for DERs.

Looking At The Document & Tesla’s Statements

The Commission’s decision to encourage ERCOT to get stakeholders together and develop a pilot project allowing the market solution of exports from VPPs to be tested is also something Tesla expressed its appreciation for. This allowed for addressing issues raised by utilities and other market participants that have concerns about the potential impacts of site-exporting DERs on distribution facilities. It also allowed for a discussion of the net impact and benefits to the transmission grid.

Tesla also clarified and provided information as a response to a few discussion topics and questions that were raised at the open meeting. These topics included the OBDRR041 status, the ERCOT Pilot Proposal, and a question posed to Tesla by Chairman Lake at the open meeting.

OBDRR041 status

Tesla noted that since the OBDRR041 is currently tabled at the ERCOT Technical Advisory Committee, it would not seek a vote until there was further development of issues and positions from ERCOT and the potential members of the committee.

“At this time, Tesla believes that OBDRR041 may remain tabled at the Technical Advisory Committee pending consideration of the feasibility of a Virtual Power Plant pilot as the Commission proposed at the Open Meeting.”

ERCOT Pilot Proposal

Tesla expressed its views on the formal ERCOT Pilot Proposal that was introduced at the Open Meeting. Tesla noted that for a formal ERCOT pilot approach to be a feasible alternative to OBDRR041, a pilot should :

Have ERCOT’s support and the market’s acceptance and approval from ERCOT’s governing board.
Be amenable to commercialization in that sufficient participants could be aggregated across sufficient distribution service areas (more than one, but in capped quantities, in each service area as described in a proposed pilot framework).
Adequately capture data addressing clearly identified distribution utility concerns, in parallel to or as part of the pilot’s scope.
Have provisions to ensure market services compensation commensurate with grid services provided by pilot participants
Have an identified “start date” and “end date” which are technically feasible for involved parties.

In addition to that last point, Tesla added that the following are requirements in Section 25.361 (k) regarding pilot development and approval:

“ERCOT may conduct a pilot project upon approval of the scope and purposes of the pilot project by the governing board of ERCOT. Proposals for approval of pilot projects shall be made to the governing board only by ERCOT staff, after consultation with affected market participants and commission staff designated by the executive director.

“The ERCOT governing board shall ensure that there is an opportunity for adequate stakeholder review and comment on any proposed pilot project.”

Tesla noted that pilot  project proposals approved by the ERCOT governing board should include the following:

The scope and purposes of the pilot project;
The designation of temporary exceptions from ERCOT rules that ERCOT expects to authorize as part of the pilot project;
Criteria and reporting mechanisms to determine whether and when ERCOT should propose changes to ERCOT rules based on the results of a pilot project.
An estimate of costs ERCOT will incur attributable to the pilot project.
An estimated date of completion of the pilot project.

Tesla’s Response To Chairman Lake

Tesla expressed its appreciation for Chairman Lake, who stated that “nothing teaches like experience, so the sooner you get something in the field, the more you learn faster.”

Tesla also responded to a question posed by the chairman and said that it’s concerned that it will not be able to scope a pilot program in a Non-Opt-in-Entity (NOIE) area. Currently, Texas homeowners are unable to participate in VPPs due to the law. Tesla said:

“Primarily, this approach may not be economically rational as it could mean a substantial resource investment in a pilot that is not scalable to a commercial retail offer where Tesla could continue to directly serve those customers and grow the program’s strength and viability.

“The customers in a pilot should be able to continue to benefit from the value for their systems beyond the end-date of the pilot, in a commercially viable solution – but with a NOIE-only pilot, Tesla would have no control, legally or otherwise, over the continued participation of such customers once the pilot closes, even if a viable market participation framework is implemented following that pilot’ s conclusion.

“Any formal program participation of those customers would be solely at the option of the NOIE serving those customers. More simply, the purpose of a pilot is to study a solution that can be scaled following adoption of market rules based on pilot learnings. To build a program off the learnings of a pilot, the customer base involved in the pilot should be able to continue service under that formalized program, so that parties involved are not running the risk of raising a wholly new set of unstudied issues in a new distribution system type that was not part of the pilot.”

Frank also shared a link to over 60 pages of data from Tesla. Deep dive coming soon.

Appreciate CleanTechnica’s originality and cleantech news coverage? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Advertisement

 

LinkedIn

Facebook

Read More

Original Source: cleantechnica.com

Continue Reading

Power

Coalition Calls for EU Hydrogen Quota for Shipping

Avatar

Published

on

Energy providers, shipping companies and NGOs call on the EU to introduce a minimum quota of 6% sustainable and scalable hydrogen fuels by 2030

A broad coalition of energy providers, shipping companies and NGOs — including Siemens Energy, Viking Cruises, Green Power Denmark and Brussels-based organisations Hydrogen Europe and Transport & Environment (T&E) — has called on the EU to introduce a minimum quota of 6% sustainable and scalable hydrogen fuels by 2030.

Last year the European Commission, the EU’s executive body, proposed a shipping fuel law (FuelEU Maritime Regulation) aimed at increasing the uptake of alternative marine fuels. Unfortunately, the law fails to guarantee the competitiveness of sustainable and scalable e-fuels, and risks promoting cheaper, unsustainable fuels. The coalition therefore calls on the European Parliament and EU Council to improve the proposal by including a dedicated e-fuels sub quota in the proposed regulation.

Delphine Gozillon, sustainable shipping officer at T&E, said:

“An ambitious shipping fuels law will be key to set the shipping sector on course for full decarbonisation. Sustainable e-fuels are currently too expensive compared to other alternatives such as fossil LNG and biofuels, holding back investments in production facilities, refuelling infrastructure in ports and zero-emission ships. However, with a bit of a push e-fuels produced from renewable hydrogen can be scalable. That’s why we need a quota to get the ball rolling and encourage companies to start investing in clean shipping fuels. Shipping does not need to be a dirty industry forever.”

A list of all the coalition’s demands can be found here.

Download the letter.

Courtesy of Transport & Environment.

Featured image courtesy of Maersk.

Appreciate CleanTechnica’s originality and cleantech news coverage? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Advertisement

 

LinkedIn

Facebook

Read More

Source Here: cleantechnica.com

Continue Reading

Power

Diving Into Tesla’s 60+ Pages of PUCT Filings (Mostly Data)

Avatar

Published

on

Tesla has over 60 pages of Public Utility Commission of Texas (PUCT) filings that have recently been shared publicly, and we’re about to dive into them. Grab some water and a coffee and let’s go.

Tesla and its team, including its US Energy Markets Policy Lead, Arushi Sharma Frank, have been working hard to help Texan Powerwall customers be able to take part in virtual power plant (VPP) pilot programs. In May, Tesla held a VPP workshop for the Electric Reliability Council of Texas (ERCOT) and Frank was one of the key leaders hosting the meeting.

Recently, Frank was asked to testify at an open meeting of the PUCT, and there she shared Tesla’s comments and statements addressing questions and other concerns relating to VPPs.

Frank tweeted a thank you to the PUCT for the opportunity of allowing Tesla to provide comments. In addition, she followed up with two more tweets, with one mentioning her favorite part of the filings — Tesla describing a phenomenon called “clumping.” Clumping is a reference to capturing the full value of distributed energy renewables capacity in an aggregate load resource (ALR).

63 Pages Of Data For PUCT

In total, there were 63 pages. I’m only going to go over some of the data briefly. I think it’s important to highlight Tesla’s hard work because if Texas allows its residents who own Powerwall batteries systems to participate in VPPs, this opens the door for other states in the Deep South to at least consider clean energy solutions for various problems, especially grid-related. Texas is well known for its grid instability, and if it allows Tesla Powerwall customers to take part in VPPs, this could mean saving lives during disasters.

Included in the filings were comments from Tesla, a request from Tesla that the Commission direct ERCOT to prioritize several actions such as allowing ALRs (Aggregated Load Resources) to provide injection capacity from individual sites in a framework by December 2022, an informal narrative of Tesla’s VPP demonstration in ERCOT, and 47 slide pages detailing the ERCOT/Tesla ancillary service demonstration.

I think the most important part for us outsiders observing here is the 47 slides, because they highlighted a lot of data that shows just how the Texas grid will benefit from VPPs. The 47 slides showed several key meetings between Tesla and ERCOT about the demo program.

Key Meeting Between Tesla & ERCOT Shows Tesla Has Been Working Hard Trying To Convince Texas To Allow VPPs

In March, there were four meetings in which Tesla defined clumping, Frank’s favorite part, as well as two telemetry signal approaches. Following that were weekly meetings around the demo results with the last demo result being April 15, 2022. On April 9, Tesla and ERCOT revisited clumping and the two telemetry signals approach.

This tells me and anyone paying close attention that Tesla has been quietly working with ERCOT to help the Texas grid for quite some time. This, I think, is a good thing, especially for Texas.

Tesla Seeks To Register The First ALR In ERCOT

According to the documents, Tesla wants to register the first ALR in ERCOT and participate in services that are currently unavailable. These services include non-spin and sCED load reduction dispatch. Tesla wants to do this with the full value of grid services that injecting devices can provide in an ALR.

Tesla said that it will lead efforts to modify the utility’s ALR Policy Other Binding Document to make it fit with practical operational, registration, and qualification issues. It clarified that ERCOT can exchange two telemetry points with an aggregation-qualified scheduling entity (QSE).

Tesla ERCOT Demo Tests

Tesla’s first demo looked at the comparison of battery and premise-level telemetry. Below is a chart showing the initial conditions, test steps, data collected, and pass criteria.

Table courtesy of Tesla

This first test results show that VPPs work beautifully in Texas. According to the results, the load decreased during the evening while in the morning it decreased while exporting to the grid. And during the daytime, the exporting of energy to the grid only increased. Tesla explained further:

“Discharging from the customer’s battery using a step function can clearly be identified in the premise-level data.

“At different times of day, premise-level data will look differently, depending on the current load:

1. Evening time: during the evening peak, user load is typically high, and discharging the battery will show up as a decrease in premise-level load.

2. Morning time: during the night/morning time, user load is typically lower, and discharging the battery will both decrease load, and export energy to the grid.

3. Daytime: during the daytime, solar is exporting to the grid, and discharging the battery will increase the export.”

You can view the full demo, test results, and all of Tesla’s comments here.

Appreciate CleanTechnica’s originality and cleantech news coverage? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Advertisement

 

LinkedIn

Facebook

Read More

Original Article: cleantechnica.com

Continue Reading

Trending

OMNT.com