Connect with us

Power

Otto Aviation’s Celera 500L Flies Business Jet Speeds With 1/8 the Fuel & Emissions

Published

on

Aviation is kind of a touchy subject when it comes to clean technology. It’s generally very energy intensive, and even taking a few commercial flights can massively increase someone’s carbon footprint. One international flight produces more emissions than a family car does in a whole year, and that’s already after you split out the emissions per person. Wealthy business travelers flying private jets produce far more per person because they don’t have other people to split the emissions up with. On the collective level, emissions from air travel account for about 5% of global warming.

The “touchy” part of the environmental impacts of jet flight isn’t in the facts (they’re pretty solid), but in our inability to give it up. Despite how bad it is for the environment, we’re very unlikely to give air travel up. It’s simply too useful and convenient. The last time I flew on a plane was in 2019, and I went from Texas to California in just a few hours, including the drive to the airport and all the usual time-consuming security theater associated with commercial jet travel. The next time I went to California was earlier this year, and we traveled by car. That took up two days (each way) that I could have otherwise spent writing, and that stung the monthly budget a noticeable bit.

If you’re a high-speed low-drag business operator like Elon Musk, every minute spent driving a car or riding on a train or bus probably costs more than my four days of driving across New Mexico, Arizona, and California, so paying the big bucks for Jet-A and getting 2-3 miles per gallon (on top of all the other pilot and jet maintenance costs) still makes financial sense. But, there are always people dunking on them for using private jets.

Otto Aviation Solves This Conundrum (Mostly) Through Insane Efficiency

This environmental issue is what makes Otto Aviation’s recent reveal of the Celera 500L so exciting.

Instead of trying to make the aircraft long and mostly cylindrical like most commercial and business jets, the 500L comes in an unusual teardrop form. With a fairly fat and blunt nose and a pointy tail, the fuselage comes out to a nearly perfect aerodynamic shape. With sharp wings and tail, landing gear that folds away cleanly inside the plane’s shape, and even the engine tucked neatly away, the plane cuts through the sky a lot more easily than other planes.

While not mentioned on Otto’s website, it appears that even the propeller is helping minimize drag. By pulling air from where the teardrop shape comes together in the rear, the propeller may even be sucking on the boundary layer like an experimental NASA design I’ve written about before, helping further reduce drag.

The air intakes for the engine, on the other hand, are spaced out from the skin of the teardrop a bit, likely because boundary layers are very unpredictable sources of air for a combustion engine, whether it’s a turbine or a piston engine.

To take better advantage of this aerodynamically clean design, Otto Aviation chose to use RED Aircraft GmbH’s AO3 engine. Like a jet engine, it runs on Jet-A fuel (basically kerosene), but it’s a turbocharged 12-cylinder piston engine. This helps reduce operation costs, as Jet-A’s economics of scale makes it cheaper to purchase and it’s more widely available. Like a jet, it’s also capable of operating at up to Flight Level 500, or 50,000 feet above sea level. But, despite similar performance, it’s designed to use only 50% of the fuel of a comparable jet engine.

That apparently wasn’t good enough for Otto, though. According to The War Zone, Otto holds multiple patents for systems that make the AO3 even more fuel efficient, including a unique heat exchanger system in the exhaust that increases thrust with less fuel.

The end result of all this is a plane that can get up to 25 MPG, and that’s the whole plane. Dividing it out for the 6 passengers it can carry comes out to 150 MPG per passenger, and that’s roughly three times better than flying commercial. Hourly operating costs are supposed to be only $328, which is a tiny fraction of what it costs to run a business jet (over $2000 hourly).

Range & Safety

The aircraft’s efficiency, combined with the engine’s efficiency, means that the plane is not only fuel efficient, but has a range of up to 4500 nautical miles (that’s over 5000 statute miles, or “normal” miles, or over 8,000 km).

The thought of flying that many miles with nothing but a piston engine keeping you from certain doom might seem a little frightening if you think about it. That’s why most passenger planes have two engines — if one were to fail, it could at least safely limp to safety and not dump you in the middle of nowhere (or worse, in the ocean), right? Fortunately, the RED AO3 engine is actually two engines in one, with two banks of six cylinders that can operate independently. Each bank has its own vital components and accessories, too, so there’s two of everything just like a twin-engined plane.

If the double-redundant engine somehow did fail, the plane’s insanely low drag design would allow it to glide 125 miles if it were flying at 30,000 feet. Otto says this is three times better than other planes. Also, there’s no fuel in the wings like many planes, so that risk is reduced in the event of a crash.

Why This Could Be A Game-Changer For Aviation & the Environment

The big thing here is reduced emissions, per plane or per passenger. If people rode in planes like these, or larger planes that Otto is planning on building (The 1000L is supposed to be 20% bigger), the benefits would be immediate even on existing routes.

On top of that, emissions could go even lower because plane flights could be cheaply tailored to specific passenger needs a lot more closely. For example, in my hometown of Las Cruces, New Mexico, you have to drive an hour to get to the nearest airport offering commercial flights, but there’s a small airport 10-20 minutes away. If flights with these much cheaper to operate planes became common from wherever you want to wherever you want, the rental car industry would certainly suffer, but things would be a lot better for the environment, as fewer air miles would be used.

Beyond the environment, there are many other possible benefits. First off, taking one’s family on a private flight for the cost of commercial would be a lot more convenient and less intrusive. Instead of paying to be treated like livestock or a potential terrorist, you could be treated like a limousine passenger, or at the very least, it could be an Uber-like experience when loading up.

In the air, the experience would be far better than flying coach. There’s more headroom, large first-class seating, and much more room in general.

In both manned and unmanned form, this aircraft could also be great for military applications, and as we know, militaries tend to be among the world’s worst emitters. Beyond the environmental benefits, the range, loiter time, and significantly lower per-hour flight costs make it a great plane for them to use for many applications.

Finally, there’s a lot of room here for electrification or straight up battery-electric drive. The current 500L test plane isn’t electrified in any form, but Otto says that it has made the plane in such a way that it’s very much possible. The greater aerodynamic efficiency alone could greatly help even current battery technology support shorter flights, but as technology continues to improve, it could lead to flights with normal ranges on clean power.

All images provided by Otto Aviation.


 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 


 

Advertisement

 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

LinkedIn

Facebook

Read More

Original Source: cleantechnica.com

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Power

The Solid-State Energy Storage Dam Is About to Bust Wide Open

Published

on

New solid state lithium-ion energy storage technology is still in the R&D phase, and it has already attracted EV manufacturers who love the idea of packing more muscle into smaller spaces while saving on weight, improving performance, and enhancing their safety profile, too. Now it looks like the stationary storage field is also coming over to the solid-state side, too.

QuantumScape Is On A Solid-State Energy Storage Tear

For those of you new to the topic, conventional lithium-ion batteries are based on a liquid electrolyte, which can be a bit testy unless properly engineered.

One emerging solution is to ditch the liquid electrolyte altogether in favor of a solid material, such as a specialized ceramic. The solid-state approach is also a tricky one, but one of the scientists pursuing the solid-state unicorn is famed University of Texas researcher John Goodenough, who is widely credited with inventing the rechargeable lithium-ion technology of today, and that is a pretty good indicator of the quality of the research in that direction.

Solid-state battery materials were a known thing by the early 19th century, but commercial interest in solid-state batteries didn’t really pick up a head of steam until 2020, when the idea took off like a rocket in the electric vehicle field.

The solid-state battery firm QuantumScape currently cites relationships with three automakers, including Volkswagen Group. The two companies began collaborating on solid-state EV batteries in 2015.

They have upped the ante since then, with plans in the works for a pilot manufacturing facility in Germany. In a recent letter to shareholders, QauntumScape described the battery manufacturing plan and issued a progress report on its four-layer solid-state cells, with each layer consisting of “a cathode, a solid-state separator, and an in-situ formed lithium-metal anode.”

Next Steps For Solid-State Energy Storage

QauntumScape is not letting the energy storage grass grow under its feet. Last week the company announced an agreement with the leading energy technology company Fluence, which is the first non-automotive partnership for its lithium-metal battery technology.

That’s a significant development, considering that as recently as last summer the market analyst IDTechEx was assuming that electric vehicles would lead the demand for solid-state batteries, followed by smart phones. Stationary storage could skip right over both of their heads in short order.

“The strategic relationship brings together two companies leading in technology innovation focused on accelerating clean energy adoption and reducing global carbon emissions,” QuantumScape enthuses. “The companies will collaborate on what they believe to be a first-of-its-kind solution to incorporate QuantumScape’s battery technology into Fluence stationary energy storage products as specific technical and commercial milestones are met.”

The two firms are eyeballing a hot growth rate for stationary energy storage in the coming years. Fluence already has a track record in deploying energy storage to improve transmission networks and replace new gas peaker plants, so look for the partners to zero in on those areas as well as others.

As a partner company that links Siemens and the utility AES, Fluence is in a good position to speed those lithium-metal batteries to market whenever they come rolling off the assembly line.

More Solid-State Batteries For More EVs

Meanwhile, last spring Ford and BMW also hooked up to the solid-state battery train last year. Mercedes-Benz and Stellantis caught the solid-state bug, too. GM dropped a hint about its future solid-state battery ambitions last month when it formed a partnership with the Korean firm POSCO Chemical. Toyota and Hyundai are also reported to be on board.

That’s an awfully big field of energy storage players scrambling for technology that probably won’t hit the market until 2025. However, it does give the R&D folks time to work out any remaining kinks.

One especially interesting development recently popped up in a study published in the journal Nature, which describes a “a class of elastomeric solid-state electrolytes with a three-dimensional interconnected plastic crystal phase.” The new electrolytes demonstrate “a combination of mechanical robustness, high ionic conductivity, low interfacial resistance and high lithium-ion transference number” along with “a powerful strategy for enabling stable operation of high-energy, solid-state lithium batteries.”

The research is a collaboration between the Korea Advanced Institute of Science and Technology and the Georgia Institute of Technology.

In a press release on the new study, GIT explains that elastomers are common synthetic rubbers. Rubber is not the first material that comes to mind when the topic turns to next-generation energy storage materials, but the research team gave their elastomer a high tech twist that transformed it into a “superhighway for fast lithium-ion transport with superior mechanical toughness, resulting in longer charging batteries that can go farther.”

“The key breakthrough was allowing the material to form a three-dimensional interconnected plastic crystal phase within the robust rubber matrix. This unique structure has resulted in high ionic conductivity, superior mechanical properties and electrochemical stability,” explains GIT.

The new electrolytes prevent the lithium dendrite growth that bedevils their liquid counterparts. GIT also notes that fabricating the new electrolyte is a relatively simple, low temperature process that yields a high quality result.

But…What About The Lithium?

Yes, what about it? EV supply chain observers have been watching the lithium supply chain like a hawk. The general consensus is that there needs to be a serious uptick in availability as the energy storage market takes off.

Solid-state technology can assist, partly by introducing more robust batteries with a longer lifecycle, and by decluttering the recycling pathway. However, the global lithium supply chain still has to pump itself up as the demand for batteries accelerates.

Lithium mining and brine extraction are two solutions at hand, but they can easily run afoul of environmental and cultural preservation goals. A more promising area of lithium R&D is geothermal extraction without the use of large evaporation lagoons.

Last June our friends over at the US Department of Energy produced a blueprint for lithium supply in the US and noted that “The worldwide lithium-battery market is expected to grow by a factor of 5 to 10 in the next decade.”

“The U.S. industrial base must be positioned to respond to this vast increase in market demand that otherwise will likely benefit well-resourced and supported competitors in Asia and Europe,” they added.

Game on!

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.

Advertisement

 

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Read More

Original Article: cleantechnica.com

Continue Reading

Power

EVs Beat Diesels As Electric Car Sales Ramp up in Europe

Published

on

Auto analyst Mathias Schmidt tells the Financial Times that sales of battery-electric cars in Europe and the UK were higher than sales of diesel-powered cars for the first time in December. “The diesel death march has been playing on repeat since September 2015 when ‘Dieselgate’ was first unveiled — causing VW to draw up the first plans of the ID.3 within 30 days of the scandal coming to light,” he said. The December data indicates 176,000 battery electric vehicles were sold in December — 6% more than in December, 2020 — as opposed to 160,000 diesels.

The Financial Times goes to some lengths to point out to its readers that the boom in electric cars is largely attributable to generous government subsidies and draconian emissions rules that force manufacturers to build low and zero emissions cars. That approach, of course, is anathema to “free market” advocates. If it weren’t for the fact that the world is hurtling toward a climate catastrophe of unimaginable proportions, such market machinations might be condemned and rightfully so.

The Financial Times reports the German government is about to revisit the wisdom of tax credits for diesel fuel that make it 14 cents per liter cheaper than premium gasoline. The love affair with diesel in Europe began after the OPEC oil embargoes in the 1970s.

Diesel engines do squeeze more miles out of a gallon of fuel than gasoline engines, and so there was a reason to promote the sale of diesel-powered vehicles at that time. The mechanism most countries chose was to increase taxes on gasoline and decrease taxes on diesel fuel. The justification for doing that has long since evaporated, however.

According to SwissInfo, sales of electric vehicles — including plug-in hybrids and conventional hybrids — reached a “tipping point” in 2021, particularly at the end of the year. For the period from September to November, fully electric vehicles accounted for 18.3% of new registrations. Including plug-in hybrids, that figure rose to 28% according to the Touring Club Switzerland. The Tesla Model 3 leads all other EV models in sales in Switzerland. The Volkswagen ID.3 is in second place, with less than half as many cars sold.

“Given the ongoing technological advancements, increased social acceptance and the ever-increasing choice of electric vehicle models, the development of electromobility is progressing faster than expected. The 50%-mark for fully electric vehicles, which most experts expected only around 2030, should therefore be reached significantly faster than expected,” TCS said.

While Switzerland’s EV charging infrastructure is on par with that in other European countries — a total of 8,497 public charging stations were available across Switzerland as of the end of 2021 — there are still too few chargers available for apartment dwellers and those who park on the street. “The hurdles for home charging are still too high for tenants, owners of apartments and residents who park on the streets,” says Krispin Romang, managing director of the Swiss eMobility association.

Switzerland is implementing new laws designed to slash carbon emissions by 50% in 2030 as compared to 1990. They include tightening tailpipe emission standards to make them similar to those imposed by the EU. Fines imposed by the new law will be used to pay for charging infrastructure upgrades.

The Takeaway

The Financial Times may harrumph about government subsidies and regulations, but they are working. If they smack of socialism to some, so be it. Socialism is preferable to extinction any day.

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.

Advertisement

 

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Read More

Article: cleantechnica.com

Continue Reading

Power

Extreme E Sustainability Award Goes to Team X44 (Video)

Published

on

X44 have become the first winners of the Extreme E Sustainability Award after topping the standings in the series’ inaugural Count Us In Challenge. The Extreme E Count Us In Challenge is a simple way for people to take practical and impactful steps that reduce their carbon footprint — and challenge governments, cities, and businesses to accelerate progress on climate action.

Extreme E aims to accelerate the adoption of clean and electrified transport to help protect people and the planet, with the Extreme E Count Us In Challenge also supporting the UN’s Race To Zero campaign. Race to Zero is a global campaign to rally leadership and support from businesses, cities, regions, investors for a healthy, resilient, zero carbon recovery that prevents future threats, creates decent jobs, and unlocks inclusive, sustainable growth.

Extreme E is a challenging racing expedition, a global odyssey, taking 100% electric SUVs to extreme environments. They have a single goal in mind — to highlight the destruction of our planet and to inspire people, companies, and locations to urgently change course and go on the positive journey we must all take. The racing series hopes to inspire everyone to change course for the good of our home planet.

Fans vote for the Extreme E Sustainability Award by supporting their favorite team through making healthier lifestyle choices for themselves and the planet. They set up a profile with Count Us In to keep track of the carbon they are saving. The tracking also adds steps to all the steps people make on the Extreme E platform.

Alejandro Agag, founder and CEO of Extreme E, congratulated X44 as the winners of the Extreme E Sustainability Award via the series’ first-ever Count Us In Challenge. “Sport is an incredible platform to not only raise awareness of the climate crisis,” Agag said, “the single biggest threat to our planet today, but also inspire action to tackle it. At Extreme E we will continue to push the boundaries and shine a spotlight on the issues we face, along with the need to act now to help protect our futures.”

Lewis Hamilton, founder of X44, explained that Extreme E, as a new sustainability initiative, “brings my vision for a more sustainable and equal world to life. Extreme E really appealed to me because of its environmental focus. Every single one of us has the power to make a difference, and it means so much to me that I can use my love of racing, together with my love for our planet, to have a positive impact.”

Fan support for X44 through the Extreme E Sustainability Award must come as solace to Hamilton, who lost the Formula 1 driving championship in 2021 when the FIA chose the final race and title winner. Mercedes conceded that “it’s going to take a long time for us to digest” the Formula 1 end-of-2021 season results, revealing that “we will never overcome the pain and the distress” that the final lap decisions caused.

What’s Behind the Extreme E Sustainability Award

Motor racing is a constant hub of transport innovation, and Extreme E represents the latest clean technology, running X Prixs in some of Earth’s most remote and stunning locations while raising awareness for the climate crisis. Extreme E and Count Us In joined forces ahead of Season 1 to launch the Extreme E Count Us In Challenge — a campaign using the power of sport and the excitement of motor racing to inspire fans to take practical steps on climate change. The sport for purpose series asked fans to take real pledges to lead a less carbon intensive lifestyle to reduce their carbon footprint.

The Extreme E Count Us In Challenge includes a variety of actions available to fans to contribute towards a greener future, including not using single-use plastic, walking and cycling more, eating more plant-based foods and driving an electric vehicle. Each step is attributed to the fans’ favorite team, and the team with the most steps at the end of Season 1 would win the inaugural Extreme E Sustainability Award.

The specific steps that Extreme E recommends to its fans are:

Drive electric: Make your next vehicle purchase electric.
Fly less: Reduce your air travel to dramatically reduce your carbon pollution.
Grow some trees: Grow trees to capture and store carbon.
Speak up at work: Come together with colleagues to make change at a bigger scale.
Volunteer: Donate your time and skills.
Dial it down: Turn down the heating in your home by a degree or two.
Switch your home: Move your home to a green energy supplier.
Tell your politicians: Ask your politicians to act or invest in infrastructure to support a step.
Cut food waste: Reduce the amount of food that is wasted or thrown away in your home.
Eat sustainable fish: Eat sustainably sourced fish.
Drink tap water: Stop buying bottled water.
Walk and cycle more: Travel by foot or bike whenever possible.
Talk to friends: Start a conversation about Count Us In and encourage others to take a step.
Buy sustainable palm oil: Look for products that use sustainable palm oil.
Use less plastic: Make plastic-free choices to reduce carbon pollution.
Eat more plants: Reduce the amount of meat in your daily diet.

The greatest fan support for the Count Us In Challenge was achieved by X44, who claimed the Award with 792 steps pledged, with JBXE (749 steps), and Rosberg X Racing (RXR) (422 steps) completing the top three. In total, the Extreme E Count Us In Challenge inspired 1,231 fans to take 3,207 steps saving 1,241,223 KG CO2.

Final Thoughts

Extreme E will continue on to Season 2 to go further in taking climate action and increasing fan interest in the Count Us In Challenge. In 2022, Extreme E will continue to race across the world’s most remote environments to demonstrate the performance and benefits of electric vehicles and clean technology, while highlighting the impact that climate change is already having on these ecosystems, such as melting ice caps, deforestation, desertification, retreating mountain glaciers, and rising sea levels.

Sébastien Loeb, X44, said: “I was very happy to learn that X44 won the Extreme E Sustainability Award for 2021. I joined the team hoping to discover more about the environment while doing what I love, and I have learned so much from the series and the different places we visited — in fact, I even bought my first electric car last year! To know that our fans have come on this journey with us and are making their own commitment to have a positive impact on the planet is inspiring, and I feel good about what we can achieve when we work together.”

When teams and fans take meaningful, simple steps in their own daily lives, they not only reduce their own carbon emissions — they’re added to a growing movement of people and communities showing leaders it’s time to accelerate progress on climate action.

Extreme E Season 2 begins in Neom, Saudi Arabia (19-20 February), before heading to Sardinia, Italy (7-8 May), Senegal or Scotland (9-10 July), Antofagasta, Chile (10-11 September), and Punta Del Este, Uruguay (26-27 November).

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.

Advertisement

 

Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Read More

Source Here: cleantechnica.com

Continue Reading

Trending

OMNT.com